15k
20k
50k
40k
45k
Correct answer is C
C = a + k
\(\frac{1}{N}\) = c
= \(\frac{aN + k}{N}\)
CN = aN + K
30(100) = a(100) + k
3000 = 100a + k.......(i)
60(40) = a(40) + k
2400 = 40a + k.......(ii)
eqn (i) - eqn (ii)
600 = 60a
a = 10
subt. for a in eqn (i) 3000 = 100(10) + K
3000 - 1000 = k
k = 2000
CN = 10N + 2000. when N = 50,
50C = 10(50) + 2000
50C = 500 + 2000
C = \(\frac{2500}{50}\)
= 50k
\((\sqrt[4]{3} + \sqrt[4]{2})(\sqrt[4]{3} - \sqrt[4]{2})(\sqrt{3} + \sqrt{2})\) is equal to
1
(\(\sqrt{2} + 4\sqrt{2}\))
(6\(\sqrt{2}\)
8
Correct answer is A
\((\sqrt[4]{3} + \sqrt[4]{2})(\sqrt[4]{3} - \sqrt[4]{2})(\sqrt{3} + \sqrt{2})\)
\((\sqrt[4]{3} + \sqrt[4]{2})(\sqrt[4]{3} - \sqrt[4]{2}) = \sqrt{3} - \sqrt[4]{6} + \sqrt[4]{6} - \sqrt{2}\)
= \(\sqrt{3} - \sqrt{2}\)
\((\sqrt{3} - \sqrt{2})(\sqrt{3} + \sqrt{2}) = 3 + \sqrt{6} - \sqrt{6} - 2\)
= \(3 - 2 = 1\)
1 - \(\frac{x}{2}\) + \(\frac{x^2}{1.2^3}\) + \(\frac{x^3}{2^4.3}\) + .........
1 - \(\frac{x}{2}\) + \(\frac{x^2}{1.2^3}\) + \(\frac{x^4}{2.4.3}\) + ..
1 + \(\frac{x}{2}\) + \(\frac{x^2}{1.2}\) + \(\frac{x^3}{1.2.3}\) + \(\frac{x^4}{1.23.4}\) + .........
1 - x + \(\frac{x^2}{1.2^3}\) + \(\frac{x^3}{2^4.3}\) + .........
1 + \(\frac{x}{2}\) + \(\frac{x^2}{1.2^3}\) + \(\frac{x^4}{1.2.6}\) + .........
Correct answer is C
\(e^{x} = 1 + x + \frac{x^{2}}{1.2} + \frac{x^{3}}{1.2.3} + ...\)
\(\frac{1}{e^{\frac{1}{2}}} = e^{-\frac{1}{2}}\)
\(e^{-\frac{1}{2}} = 1 - \frac{x}{2} + \frac{x^{2}}{1.2^{3}} - \frac{x^{3}}{1.2^{4}.3} + ... \)
Find the values of p for which the equation x2 - (p - 2)x + 2p + 1 = 0
(21, 0)
(0, 12)
(1, 2)
(3, 4)
(4, 5)
Correct answer is B
Equal roots implies b2 - 4ac = 0
a = 1b = - (p - 2), c = 2p + 1
[-(p - 2)]2 - 4 x 1 x (2p + 1) = 0
p2 - 4p + 4 - 4(2p + 1) = 0
p2 - 4p = 4 - 8p - 4 = 0
p2 - 12p = 0
p(p - 12) = 0
p = 0 or 12
1M = 1\(\frac{15}{57}\)N
1M = 38\(\frac{1}{4}\)N
1M = 1\(\frac{18}{57}\)N
1M = 384\(\frac{3}{4}\)N
Correct answer is C
N = 22\(\frac{1}{2}\)%, M = 17\(\frac{1}{10}\)%
M = \(\frac{171}{10}\)%, N = \(\frac{45}{2}\)
\(\frac{45}{2}\) x \(\frac{10}{171}\)
= \(\frac{225}{171}\)
= 1 \(\frac{54}{171}\)
= 1 \(\frac{18}{57}\)