\(\frac{b^2}{a^2}\)
\(\frac{a^2}{b^2}\)
\(\frac{a^2 + b^2}{b^2 - a^2}\)
\(\frac{2a^2 + b^2}{a^2 + b^2}\)
Correct answer is A
cos\(\theta\) = \(\frac{a}{b}\), Sin\(\theta\) = \(\sqrt{\frac{b^2 - a^2}{a}}\)
Tan\(\theta\) = \(\sqrt{\frac{b^2 - a^2}{a^2}}\), Tan 2 = \(\sqrt{\frac{b^2 - a^2}{a^2}}\)
1 + tan2\(\theta\) = 1 + \(\frac{b^2 - a^2}{a^2}\)
= \(\frac{a^2 + b^2 - a^2}{a^2}\)
= \(\frac{b^2}{a^2}\)
What is the circumference of latitude 0\(^o\)S if R is the radius of the earth? ...
If 55\(_x\) + 52\(_x\) = 77\(_{10}\) find X ...
Find the exterior angle of a 12 sided regular polygon ...
Convert 112\(_6\) to a number in base three...
The angle of a sector of a circle radius 10.5cm is 120°. Find the perimeter of the sector [Take ...