In \(\bigtriangleup\) XYZ, XY = 13cm, YZ = 9cm, XZ = 11cm and XYZ = \(\theta\). Find cos\(\theta\)o
\(\frac{4}{39}\)
\(\frac{43}{39}\)
\(\frac{209}{3}\)
\(\frac{43}{78}\)
Correct answer is D
cos\(\theta\) = \(\frac{13^2 + 9^2 - 11^2}{2(13)(9)}\)
= \(\frac{169 + 81 - 21}{26 \times 9}\)
cos\(\theta\) = \(\frac{129}{26 \times 9}\)
= \(\frac{43}{78}\)
If f(x - 2) = 4x2 + x + 7, find f(1)
12
27
7
46
17
Correct answer is D
f(x - 2) = 4x2 + x + 7
x - 2 = 1, x = 3
f(x - 2) = f(1)
= 4(3)2 + 3 + 7
= 36 + 10
= 46
Solve the simultaneous equations 2x - 3y = -10, 10x - 6y = -5
x = 2\(\frac{1}{2}\), y = 5
x = \(\frac{1}{2}\), y = \(\frac{3}{2}\)
x = 2\(\frac{1}{4}\), y = 3\(\frac{1}{2}\)
x = 2\(\frac{1}{3}\), y = 3\(\frac{1}{2}\)
x = 2\(\frac{1}{3}\), y = 2\(\frac{1}{2}\)
Correct answer is A
2x - 3y = -10; 10x - 6y = -5
2x - 3y = -10 x 2
10x - 6y = -5
4x - 6y = -20 .......(i)
10x - 6y = -5.......(ii)
eqn(ii) - eqn(1)
6x = 15
x = \(\frac{15}{6}\)
= \(\frac{5}{2}\)
x = 2\(\frac{1}{2}\)
Sub. for x in equ.(ii) 10(\(\frac{5}{2}\)) - 6y = -5
6y = 25 + 5 → 30
y = \(\frac{30}{6}\)
y = 5
Solve the following equation \(\frac{2}{2r - 1}\) - \(\frac{5}{3}\) = \(\frac{1}{r + 2}\)
(\(\frac{5}{2}\), 1)
(5, -4)
(2, 1)
(1, \(\frac{-5}{2}\))
(1,-2)
Correct answer is D
\(\frac{2}{2r - 1}\) - \(\frac{5}{3}\) = \(\frac{1}{r + 2}\)
\(\frac{2}{2r - 1}\) - \(\frac{1}{r + 2}\) = \(\frac{5}{3}\)
\(\frac{2r + 4 - 2r + 1}{2r - 1 (r + 2)}\) = \(\frac{5}{3}\)
\(\frac{5}{(2r + 1)(r + 2)}\) = \(\frac{5}{3}\)
5(2r - 1)(r + 2) = 15
(10r - 5)(r + 2) = 15
10r2 + 20r - 5r - 10 = 15
10r2 + 15r = 25
10r2 + 15r - 25 = 0
2r2 + 3r - 5 = 0
(2r2 + 5r)(2r + 5) = r(2r + 5) - 1(2r + 5)
(r - 1)(2r + 5) = 0
r = 1 or \(\frac{-5}{2}\)
Solve for (x, y) in the equation 2x + y = 4: x^2 + xy = -12
(6, -8): (-2, 8)
(3, -4): (-1, 4)
(8, -4): (-1, 4)
(-8, 6): (8, -2)
(-4, 3): (4, -1)
Correct answer is A
2x + y = 4......(i)
x^2 + xy = -12........(ii)
from eqn (i), y = 4 - 2x
= x2 + x(4 - 2x)
= -12
x2 + 4x - 2x2 = -12
4x - x2 = -12
x2 - 4x - 12 = 0
(x - 6)(x + 2) = 0
sub. for x = 6, in eqn (i) y = -8, 8
=(6,-8); (-2, 8)