JAMB Mathematics Past Questions & Answers - Page 207

1,031.

In \(\bigtriangleup\) XYZ, XY = 13cm, YZ = 9cm, XZ = 11cm and XYZ = \(\theta\). Find cos\(\theta\)o

A.

\(\frac{4}{39}\)

B.

\(\frac{43}{39}\)

C.

\(\frac{209}{3}\)

D.

\(\frac{43}{78}\)

Correct answer is D

cos\(\theta\) = \(\frac{13^2 + 9^2 - 11^2}{2(13)(9)}\)

= \(\frac{169 + 81 - 21}{26 \times 9}\)

cos\(\theta\) = \(\frac{129}{26 \times 9}\)

= \(\frac{43}{78}\)

1,032.

If f(x - 2) = 4x2 + x + 7, find f(1)

A.

12

B.

27

C.

7

D.

46

E.

17

Correct answer is D

f(x - 2) = 4x2 + x + 7

x - 2 = 1, x = 3

f(x - 2) = f(1)

= 4(3)2 + 3 + 7

= 36 + 10

= 46

1,033.

Solve the simultaneous equations 2x - 3y = -10,  10x - 6y = -5

A.

x = 2\(\frac{1}{2}\), y = 5

B.

x = \(\frac{1}{2}\), y = \(\frac{3}{2}\)

C.

x = 2\(\frac{1}{4}\), y = 3\(\frac{1}{2}\)

D.

x = 2\(\frac{1}{3}\), y = 3\(\frac{1}{2}\)

E.

x = 2\(\frac{1}{3}\), y = 2\(\frac{1}{2}\)

Correct answer is A

2x - 3y = -10; 10x - 6y = -5

2x - 3y = -10 x 2

10x - 6y = -5

4x - 6y = -20 .......(i)

10x - 6y = -5.......(ii)

eqn(ii) - eqn(1)

6x = 15

x = \(\frac{15}{6}\)

= \(\frac{5}{2}\)

x = 2\(\frac{1}{2}\)

Sub. for x in equ.(ii) 10(\(\frac{5}{2}\)) - 6y = -5

6y = 25 + 5 → 30

y = \(\frac{30}{6}\)

y = 5

1,034.

Solve the following equation \(\frac{2}{2r - 1}\) - \(\frac{5}{3}\) = \(\frac{1}{r + 2}\)

A.

(\(\frac{5}{2}\), 1)

B.

(5, -4)

C.

(2, 1)

D.

(1, \(\frac{-5}{2}\))

E.

(1,-2)

Correct answer is D

\(\frac{2}{2r - 1}\) - \(\frac{5}{3}\) = \(\frac{1}{r + 2}\)

\(\frac{2}{2r - 1}\) - \(\frac{1}{r + 2}\) = \(\frac{5}{3}\)

\(\frac{2r + 4 - 2r + 1}{2r - 1 (r + 2)}\) = \(\frac{5}{3}\)

\(\frac{5}{(2r + 1)(r + 2)}\) = \(\frac{5}{3}\)

5(2r - 1)(r + 2) = 15

(10r - 5)(r + 2) = 15

10r2 + 20r - 5r - 10 = 15

10r2 + 15r = 25

10r2 + 15r - 25 = 0

2r2 + 3r - 5 = 0

(2r2 + 5r)(2r + 5) = r(2r + 5) - 1(2r + 5)

(r - 1)(2r + 5) = 0

r = 1 or \(\frac{-5}{2}\)

1,035.

Solve for (x, y) in the equation 2x + y = 4: x^2 + xy = -12

A.

(6, -8): (-2, 8)

B.

(3, -4): (-1, 4)

C.

(8, -4): (-1, 4)

D.

(-8, 6): (8, -2)

E.

(-4, 3): (4, -1)

Correct answer is A

2x + y = 4......(i)

x^2 + xy = -12........(ii)

from eqn (i), y = 4 - 2x

= x2 + x(4 - 2x)

= -12

x2 + 4x - 2x2 = -12

4x - x2 = -12

x2 - 4x - 12 = 0

(x - 6)(x + 2) = 0

sub. for x = 6, in eqn (i) y = -8, 8

=(6,-8); (-2, 8)