\(\frac{4}{\sqrt{3}}\)
\(4 \sqrt{3}\)
\(\sqrt{\frac{3}{2}}\)
\(\frac{1}{\sqrt{3}}\)
\(\frac{2}{\sqrt{3}}\)
Correct answer is A
\(\frac{\cot (90 - \theta)}{sin^2\theta}\)
\(\cot (90 - \theta) = \tan \theta\)
\(\therefore \frac{\cot (90 - \theta)}{\sin^{2} \theta} = \frac{\tan \theta}{\sin^{2} \theta}\)
\(\tan \theta = \frac{\sqrt{3}}{3}\)
\(\sin \theta = \frac{1}{2} \implies \sin^{2} \theta = \frac{1}{4}\)
\(\frac{\cot(90 - \theta)}{\sin^{2} \theta} = \frac{\sqrt{3}}{3}\div\frac{1}{4}\)
= \(\frac{4}{\sqrt{3}}\)
Find the area of a regular hexagon inscribed in a circle of radius 8cm
16\(\sqrt{3}\) cm3
96\(\sqrt{3}\) cm3
192\(\sqrt{3}\) cm3
16\(\sqrt{3}\) cm2
33cm2
Correct answer is B
Area of a regular hexagon = 8 x 8 x sin 60o
= 32 x \(\frac{\sqrt{3}}{2}\)
Area = 16\(\sqrt{3}\) x 6 = 96 \(\sqrt{3}\)cm2
\(\frac{7}{10}\)
\(\frac{3}{5}\)
\(\frac{4}{5}\)
\(\frac{3}{10}\)
Correct answer is B
Simple Space: (1, 2, 3, 4, 5, 6, 7, 8, 9, 10 = 10)
Prime: (2, 3, 5, 7)
multiples of 3: (3, 6, 9)
Prime or multiples of 3: (2, 3, 5, 6, 7, 9 = 6)
Probability = \(\frac{6}{10}\)
= \(\frac{3}{5}\)
Without using table, calculate the value of 1 + sec2 30o
2\(\frac{1}{3}\)
\(\frac{2}{15}\)
\(\frac{5}{3}\)
3\(\frac{1}{2}\)
Correct answer is A
1 + sec2 30o = sec 30o
= \(\frac{2}{\sqrt{3}}\)
\(\frac{(2)^2}{3}\)
= \(\frac{4}{3}\)
1 + sec2 30o = sec 30o
= 1 + \(\frac{4}{3}\)
= 2\(\frac{1}{3}\)
S 18o W
S 72o W
S 72o E
S 27o E
S 27o W
Correct answer is B
B = Bird ; H = Hunter.
Bearing of the hunter from the bird = S 72° W.