250N
200N
100N
50N
Correct answer is A
Original length = 20m
first new length = 20.01m
first increase in length = 20.01m - 20m = 0.01m
Second new length = 20.05m
second increase in length = 20.05 - 20m = 0.05m
From hooke's law = \( \frac{F_1}{e_1} = \frac{F_2}{e_2} \implies \frac{50}{0.01} = \frac{F_2}{0.05} \\
\implies F_2 = \frac{50 \times 0.05}{0.01} = 250N \)
1.250V
2.000V
8.000V
0.125V
Correct answer is B
E = V + v
where E = emf of cell.
V = terminal p.d
v = loss voltage of the cell.
But from ohm's law V=IR ; v = Iv
\( \implies \) lost voltage = V = Ir
= 4 x 0.5
= 2.0v
600
290
990
900
Correct answer is B
From the relation refractive index = Sin \( \left(\frac{A+Dm}{2}\right) \)
Where A = refractive angle = 600, Sin\( \left(\frac{A}{2}\right) \)
\( \implies 1.4 = \frac{\text{Sin}\left(\frac{60^0 + Dm}{2}\right)}{\text{Sin}\left(\frac{60}{2}\right)} \\
= \frac{\text{Sin}\left(\frac{60 + Dm}{2}\right)}{\text{Sin}30^0} \\
= \frac{\text{Sin}\left(\frac{60 + Dm}{2}\right)}{0.5}\\
\text{Therefore} 1.4 \times 0.5 = \text{Sin}\left(\frac{60 + Dm}{2}\right) \\
\text{Therefore} \left(\frac{60 + D_m}{2}\right)= \text{Sin}^{-1} 0.7000 \\
= 44^0 12^1 \\
60^0 + D_m = 88^0 24^1 \\
D_m = 88^0 24^1 - 60^0 \\
= 28^0 24 \\
29^0 \)
12cm
20cm
18cm
15cm
Correct answer is C
For Hooke's law F = Ke
\( \implies F/e = K \\
f1/e1=f2/e2 \\
\text{Let the original length} = t_0 \\
\text{therefore} e1 = (36 - t_0)cm ; e2 = (46 - t_0)cm \\
\text{if f1} = 40N \text{f2} = 60N \\
\text{Then } \frac{40}{36 - t_0} = \frac{60}{45 - t_0} \\
\implies 40(45 - t_0) = 60(36 - t_0) \\
\text{therefore } 1800 - 40t_0 \\
2160 - 60t_0 \\
60t_0 - 40t_0 = 2160 - 1800 \\
20t_0 = 360 \\
t_0 = 18cm \)
If two inductors of inductances 3H and 6H are arranged in series, the total inductance is
9.0H
18.0H
0.5H
2.0H
Correct answer is A
l =l1 + l2 = 3 + 6 = 9H