Loading [MathJax]/jax/output/HTML-CSS/jax.js

JAMB Mathematics Past Questions & Answers - Page 114

566.

TQ is tangent to circle XYTR, < YXT = 32o, RTQ = 40o. find < YTR

A.

108o

B.

121o

C.

140o

D.

148o

Correct answer is A

< TWR = < QTR = 40o (alternate segment)

< TWR = < TXR = 40o(Angles in the same segments)
< YXR = 40o + 32o = 72o

< YXR + < YTR = 180o(Supplementary)

72o + < YTR = 180o

< YTR = 180o - 72o

= 108o

567.

In the figure, PQST is a parallelogram and TSR is a straight line. If the area of QRS is 20cm2, find the area of the trapezium PQRT.

A.

35cm2

B.

65cm2

C.

70cm2

D.

140cm2

Correct answer is C

A = 12 x 8 x h = 20

= 12 x 8 x h = 4h

h = 204

= 5cm

A(PQTS) = L x H

APQRT = AQSR + APQTS

20 + 50 = 70cm2

ALTERNATIVE METHOD

APQRT = 12 x 5 x 28

= 70cm2

568.

In diagram, PQ || ST and < PQR = 120o, < RST = 130o, find the angle marked x

A.

50

B.

65

C.

70

D.

80

Correct answer is C

x + 60o + 50o = 180o

x = 110o = 180o

x = 180o - 110o

= 70o

569.

In the diagram, PR is a diameter of the circle PQRS. PST and QRT are straight lines. Find QRS

A.

20o

B.

25o

C.

30o

D.

35o

Correct answer is B

< PSR = 12(180o) = 90o (angle substended by a semi-circle)

∴ < TSR = 90o

< SRT = 90o - 30o = 60o

< PRS = 90o - 35o = 55o

< PRQ = 180 - (60o + 55o) = 180 - 115o = 65o

< SQR = 35o(angles in the same segment)

< QSR + < SRQ + < SQR = 180o

< QSR + 120o + 35o = 180o

< QSR + 155 = 180o

< QSR = 180o - 155o

= 25o

570.

The shaded area represents

A.

x 0, y 0, 2y + 3x 6

B.

x 0, y 3, 3x + 2y 6

C.

x 2, y 0, 3x + 2y 6

D.

x 0, y 0, 3x + 2y 6

Correct answer is A

m = y2y1x2x2=3002=32

= yy1xx1

m = y3x 32

2(y - 3) - 3x = 2y - 6 - 3x

= 2y + 3x 6 ; x 0, y 0