The shaded area represents
x \(\leq\) 0, y \(\leq\) 0, 2y + 3x \(\leq\) 6
x \(\geq\) 0, y \(\geq\) 3, 3x + 2y \(\geq\) 6
x \(\geq\) 2, y \(\geq\) 0, 3x + 2y \(\leq\) 6
x \(\geq\) 0, y \(\geq\) 0, 3x + 2y \(\geq\) 6
Correct answer is A
m = \(\frac{y_2 - y_1}{x_2 - x_2} = \frac{3 - 0}{0 - 2} = \frac{-3}{2}\)
= \(\frac{y - y_1}{x- x_1}\)
m = \(\frac{y - 3}{x}\) \(\geq\) \(\frac{-3}{2}\)
2(y - 3) \(\geq\) - 3x = 2y - 6 \(\geq\) - 3x
= 2y + 3x \(\leq\) 6 ; x \(\leq\) 0, y \(\leq\) 0