JAMB Physics Past Questions & Answers - Page 10

46.

A travelling wave of amplitude 0.80 m has a frequency of 16 Hz and a wave speed of 20 \(ms-1\)

Calculate the wave number of the wave.

A.

3

B.

42

C.

5

D.

2

Correct answer is C

A=0.8m; f=16Hz; v=20 \(ms^-1\); k=?

v = fλ

λ =1.25m


= k= \(\frac{2π}{λ}\) =\(\frac{2 × 3.142}{1.25}\)
 
 k=  5m ( to 1 s.f)

 

47.

Three forces with magnitudes 16 N, 12 N and 21 N are shown in the diagram below. Determine the magnitude of their resultant force and angle with the x-axis

A.

7.63N,61°

B.

8.71N,61°

C.

7.63N,29°

D.

8.71N,29°

Correct answer is B

Fx= 12cos32°-16cos26°    =    -4.20N    (right is taken +ve and left is taken -ve)

Fy=12sin32°+16sin26°-21 = -7.63N  (up is taken +ve and down is taken -ve)

\(R^2\)= 4.202+7.632

⇒\(R^2\) = 75.86

⇒ R=√75.86

∴R = 8.71 N

tan θ=\(\frac{opp}{adj}\)


⇒tan θ=\(\frac{7.63}{4.20}\)

⇒tan θ =1.8095

⇒ θ = \(tan^-1\) (1.8095)

   θ = 61°

∴The angle of the resultant force with the x-axis is 61°

 

 

 


 


 

 

 

48.

A simple pendulum, has a period of 5.77 seconds. When the pendulum is shortened by 3 m, the period is 4.60 seconds. Calculate the new length of the pendulum

A.

5.23 m

B.

6.42 m

C.

4.87 m

D.

7.26 m

Correct answer is A

     Let the original length L=xm

      ;New length =( x -3 ) m

       \(T_1\) = 5.77s; \(T_2\) = 4.60s,  

       \(T^2\) α  L

       ⇒\(T_2) = kL  where K is constant

       ⇒K = \(\frac{T^2_1}{L_1}\) = \(\frac{T^2_2}{L_2}\)

      ⇒\(\frac{5.77^2}{x}\)  = \(\frac{4.60^2}{x-3}\)

      ⇒ \(\frac{33.29}{x}\)  = \(\frac{4.60^2}{x-3}\)

      ⇒ 33.29(x-3)  = 21.16x
        
      ⇒ 33.29x - 99.87 =21.16x

      ⇒12.13x = 99.87
     
      ;x =\(\frac{99.87}{12.13}\)  = 8.23m
    
      New length of the pendulum 
     
      =x-3 = 8.23-3
   
      =5.23m

     

 

49.

Light of wavelength 589 nm in vacuum passes through a piece of fused quartz of index of refraction n = 1.458. What is the frequency of the light in fused quartz?

[Speed of light c = \(3.00×10^8 ms^{-1}\)]

A.

\(5.09×10^{15}\)Hz

B.

\(5.09×10^{14}\) Hz

C.

\(1.77×10^{15}\) Hz

D.

\(1.77×10^{14}\) Hz

Correct answer is B

n=1.458, c=\(3.00 ×10^8 ms^-1\) ,λo = 589nm;  f=?

Speed of light in a medium (v)=\(\frac{c}{n}\)  where n is the refractive index of the medium

⇒λn=\(\frac{589}{1.458}\) = 404nm

  v=fλ
  
⇒f=\(\frac{v}{λ}\) 

=\(\frac{2.06×10^8}{404×10^-9}\) \(1nano=10^{-9}\)

∴f=\(5.09×10^{14}\) Hz

50.

A 400 N box is being pushed across a level floor at a constant speed by a force P of 100 N at an angle of 30.0° to the horizontal, as shown in the the diagram below. What is the coefficient of kinetic friction between the box and the floor?
 

A.

0.19

B.

0.24

C.

0.40

D.

0.22

Correct answer is A

W = 400 N; P = 100 N; θ = 30o; μ = ?

Frictional force (Fr) = μR (where R is the normal reaction)

The forces acting along the horizontal direction are Fr and Px

∴ Pcos 30° - Fr = ma (Pcos 30° is acting in the +ve x-axis while Fr in the -ve x-axis)

⇒ 100cos 30° - μR = ma

Since the box is moving at constant speed, its acceleration is zero

⇒ 100cos 30° - μR = 0

⇒ 100cos 30o = μR ----- (i)

The forces acting in the vertical direction are W, Py and R

∴ R - Psin 30° - W = 0 (R is acting upward (+ve) while Py and W are acting downward (-ve) and they are at equilibrium)

⇒ R - 100sin 30° - 400 = 0

⇒ R = 100sin 30° + 400

⇒ R = 50 + 400 = 450 N

From equation (i)

⇒ 100cos 30° = 450μ

⇒μ=100cos30°

  N = \(\frac{100cos30°}{450}\)

        = μ = 0.19