A simple pendulum, has a period of 5.77 seconds. When the pendulum is shortened by 3 m, the period is 4.60 seconds. Calculate the new length of the pendulum

A.

5.23 m

B.

6.42 m

C.

4.87 m

D.

7.26 m

Correct answer is A

     Let the original length L=xm

      ;New length =( x -3 ) m

       \(T_1\) = 5.77s; \(T_2\) = 4.60s,  

       \(T^2\) α  L

       ⇒\(T_2) = kL  where K is constant

       ⇒K = \(\frac{T^2_1}{L_1}\) = \(\frac{T^2_2}{L_2}\)

      ⇒\(\frac{5.77^2}{x}\)  = \(\frac{4.60^2}{x-3}\)

      ⇒ \(\frac{33.29}{x}\)  = \(\frac{4.60^2}{x-3}\)

      ⇒ 33.29(x-3)  = 21.16x
        
      ⇒ 33.29x - 99.87 =21.16x

      ⇒12.13x = 99.87
     
      ;x =\(\frac{99.87}{12.13}\)  = 8.23m
    
      New length of the pendulum 
     
      =x-3 = 8.23-3
   
      =5.23m