\(\frac{x}{x + 1}\)
\(\frac{-1}{x + 1}\)
\(\frac{1 - x}{(x + 1)^2}\)
\(\frac{1}{(x + 1)^2}\)
Correct answer is D
\(\frac{d}{dx}(\frac{x }{x + 1}\)) = \(\frac{v\frac{du}{dx} - u\frac{dv}{dx}}{v^2}\)
u = x, \(\frac{du}{dx}\) = 1, v = x + 1, \(\frac{dv}{dx}\) = 1
= \(\frac{(x + 1)(1) - x (1)}{(x + 1)^2}\)
= \(\frac{x + 1 - x}{(x + 1)^2}\)
= \(\frac{1}{(x + 1)^2}\)
Find the inverse of \(\begin{pmatrix} 3 & 5 \\ 1 & 2 \end{pmatrix}\)...
Solve \(3x^{2} + 4x + 1 > 0\)...
Evaluate \(\int^0_0 \sqrt{x} dx\)...
Find the least value of n for which \(^{3n}C_{2} > 0, n \in R\)...
Simplify \(\frac{\sqrt{3}}{\sqrt{3} -1} + \frac{\sqrt{3}}{\sqrt{3} + 1}\)...
Two forces, each of magnitude 16 N, are inclined to each other at an angle of 60°. Calculate the...
Express \(\frac{8 - 3\sqrt{6}}{2\sqrt{3} + 3\sqrt{2}}\) in the form \(p\sqrt{3} + q\sqrt{2}\)...