\(\frac{x}{x + 1}\)
\(\frac{-1}{x + 1}\)
\(\frac{1 - x}{(x + 1)^2}\)
\(\frac{1}{(x + 1)^2}\)
Correct answer is D
\(\frac{d}{dx}(\frac{x }{x + 1}\)) = \(\frac{v\frac{du}{dx} - u\frac{dv}{dx}}{v^2}\)
u = x, \(\frac{du}{dx}\) = 1, v = x + 1, \(\frac{dv}{dx}\) = 1
= \(\frac{(x + 1)(1) - x (1)}{(x + 1)^2}\)
= \(\frac{x + 1 - x}{(x + 1)^2}\)
= \(\frac{1}{(x + 1)^2}\)
If\((\frac{1}{9})^{2x-1} = (\frac{1}{81})^{2-3x}\)find the value of x...
A binary operation ♦ is defined on the set R, of real numbers by \(a ♦ b = \fr...
Evaluate \(\int_{1}^{2} \frac{4}{x^{3}} \mathrm {d} x\)...
Given that P and Q are non-empty subsets of the universal set, U. Find P \(\cap\) (Q U Q`)....
If \(2\sin^{2} \theta = 1 + \cos \theta, 0° \leq \theta \leq 90°\), find the value of \(\the...
Express \(\frac{4π}{2}\) radians in degrees....
Calculate, correct to one decimal place, the angle between 5i + 12j and -2i + 3j. ...