Given that M is the midpoint of T (2, 4) and Q (-8, 6), f...
Given that M is the midpoint of T (2, 4) and Q (-8, 6), find the length of MQ .
\(√26 units\)
\(√28 units\)
\(√24 units\)
\(√30 units\)
Correct answer is A
\(|MQ| = \frac{1}{2} |TQ|\)
\(|TQ| = √((y2 - y1)^2 + (x2 - x1)^2)\)
\(|TQ| = √((6 - 4)^2 + (-8 - 2)^2)\)
\(|TQ| = √(2^2 + (-10)^2)\)
\(|TQ| = √(4 + 100) = √104\)
\(|TQ| = 2√26 units\)
\(|MQ| = \frac{1}{2} |TQ| = 2 \times 2√26\)
∴ \(|MQ| = √26 units\)
Find \(\lim\limits_{x \to 3} (\frac{x^{3} + x^{2} - 12x}{x^{2} - 9})\)...
Find the value of p for which \(x^{2} - x + p\) becomes a perfect square. ...
Simplify \(\frac{\sqrt{3}}{\sqrt{3} - 1} + \frac{\sqrt{3}}{\sqrt{3} +1}\)...
Find the range of values of x for which 2x\(^2\) + 7x - 15 ≥ 0....