Given that M is the midpoint of T (2, 4) and Q (-8, 6), f...
Given that M is the midpoint of T (2, 4) and Q (-8, 6), find the length of MQ .
\(√26 units\)
\(√28 units\)
\(√24 units\)
\(√30 units\)
Correct answer is A
\(|MQ| = \frac{1}{2} |TQ|\)
\(|TQ| = √((y2 - y1)^2 + (x2 - x1)^2)\)
\(|TQ| = √((6 - 4)^2 + (-8 - 2)^2)\)
\(|TQ| = √(2^2 + (-10)^2)\)
\(|TQ| = √(4 + 100) = √104\)
\(|TQ| = 2√26 units\)
\(|MQ| = \frac{1}{2} |TQ| = 2 \times 2√26\)
∴ \(|MQ| = √26 units\)
Marks 5 - 7 8 - 10 11 - 13 14 - 16 17 - 19 20 - 22 Frequency 4 7 26 41 1...
The distance between P(x, 7) and Q(6, 19) is 13 units. Find the values of x. ...
\(P = {x : 1 \leq x \leq 6}\) and \(Q = {x : 2 < x < 9}\) where \(x \in R\), find \(P \cap Q\)...
If \(\sin x = -\sin 70°, 0° < x < 360°\), determine the two possible values of x....
If \(f(x) = 3x^{3} + 8x^{2} + 6x + k\) and \(f(2) = 1\), find the value of k....
The table shows the distribution of marks obtained by some students in a test Marks 0-9 10-...