-1
- \(\frac{1}{2}\)
\(\frac{1}{2}\)
1
Correct answer is D
Lim(\(\frac{1 - x}{x^2 - 3x + 2}\))
= \(^{lim}_{x \to 1} \begin{pmatrix} \frac{1 - x}{x^2 - 3x + 2} \end {pmatrix}\)
= \(^{lim}_{x \to 1} \begin{pmatrix} \frac{x - 1}{(x - 2)(x + 1)} \end {pmatrix}\)
= \(\frac{-1}{1 - 2}\)
= \(\frac{-1}{-1}\)
= 1
If \(f(x) = x^{2}\) and \(g(x) = \sin x\), find g o f....
\(Simplify: \frac{log √27 - log √8}{log 3 - log 2}\)...
Given that \(p = \begin{bmatrix} x&4\\3&7\end{bmatrix} Q =\begin{bmatrix} x&3\\1&2x\...
A body is acted upon by forces \(F_{1} = (10 N, 090°)\) and \(F_{2} = (6 N, 180°)\). Find th...
If \(^{3x}C_{2} = 15\), find the value of x?...