{21, 91, 221}
{21, 91, 221, 381}
{1,21, 91, 221}
{1,21, 91, 221,381}
Correct answer is A
multiples of 5 less than 20 = 5, 10 and 15
= [ 5, 10 and 15 ]x\(^2\) - x + 1
x\(^2\) - x + 1
when x = 5
5\(^2\) - 5 + 1; 25 - 5 + 1 --> 21
when x = 10
10\(^2\) - 10 + 1
100 - 9 = 91
when x = 15
15\(^2\) - 15 + 1
225 - 15 + 1 = 211
Evaluate \(\int^0_0 \sqrt{x} dx\)...
If \(\frac{5}{\sqrt{2}} - \frac{\sqrt{8}}{8} = m\sqrt{2}\), where m is a constant. Find m....
If \(\frac{^{8}P_{x}}{^{8}C_{x}} = 6\), find the value of x....
Find the unit vector in the direction opposite to the resultant of forces. F\(_1\) =...
Evaluate \(\log_{10}(\frac{1}{3} + \frac{1}{4}) + 2\log_{10} 2 + \log_{10} (\frac{3}{7})\)...
Express \(\frac{3}{3 - √6}\) in the form \(x + m√y\)...
Given that \(a^{\frac{5}{6}} \times a^{\frac{-1}{n}} = 1\), solve for n...