\(\frac{1}{3}(4i + 3j)\)
\(\frac{1}{3}(3i + 4j)\)
\(\frac{1}{5}(3i + 4j)\)
\(\frac{1}{5}(4i + 3j)\)
Correct answer is D
\(\hat {n} = \frac{\overrightarrow{p}}{|p|}\)
where \(\hat {n}\) is the unit vector in the direction of p.
\(|p| = \sqrt{4^{2} + 3^{2}} = \sqrt{25} = 5\)
\(\hat {n} = \frac{1}{5} (4i + 3j)\)
The gradient of point P on the curve \(y = 3x^{2} - x + 3\) is 5. Find the coordinates of P....
If \((2x^{2} - x - 3)\) is a factor of \(f(x) = 2x^{3} - 5x^{2} - x + 6\), find the other factor...
If \(\sin x = -\sin 70°, 0° < x < 360°\), determine the two possible values of x....
If \(x^{2} - kx + 9 = 0\) has equal roots, find the values of k....