\(\begin{vmatrix} 4 & 3 \\ 6 & 1 \end{vmatrix}\)
\(\begin{vmatrix} 4 & 3 \\ 6 & 4 \end{vmatrix}\)
\(\begin{vmatrix} 2 & 2 \\ 6 & 2 \end{vmatrix}\)
\(\begin{vmatrix} 3 & 2 \\ 6 & 4 \end{vmatrix}\)
Correct answer is B
\( P^{2} = \begin{vmatrix} 1 & 1 \\ 2 & 1 \end{vmatrix} \begin{vmatrix} 1 & 1 \\ 2 & 1 \end{vmatrix}\)
\(\begin{vmatrix} 1 \times 1 + 1 \times 2 & 1 \times 1 + 1 \times 1 \\ 2 \times 1 + 1 \times 2 & 2 \times 1 + 1 \times 1 \end{vmatrix}\)
= \(\begin{vmatrix} 3 & 2 \\ 4 & 3 \end{vmatrix} + \begin{vmatrix} 1 & 1 \\ 2 & 1 \end{vmatrix}\)
= \(\begin{vmatrix} 4 & 3 \\ 6 & 4 \end{vmatrix}\)
In how many ways can 8 persons be seated on a bench if only three seats are available? ...
Given that P = {x : 2 ≤ x ≤ 8} and Q = {x : 4 < x ≤ 12} are subsets of the universal set...
Solve \(9^{2x + 1} = 81^{3x + 2}\)...
Find the domain of \(g(x) = \frac{4x^{2} - 1}{\sqrt{9x^{2} + 1}}\)...
Find the radius of the circle \(x^{2} + y^{2} - 8x - 2y + 1 = 0\)....