If \(\begin{vmatrix}  k & k \\ 4 & k \end{vmatrix} + \begin{vmatrix}  2 & 3 \\ -1 & k \end{vmatrix} = 6\), find the value of the constant k, where k > 0.

A.

1

B.

2

C.

3

D.

4

Correct answer is C

\(\begin{vmatrix} k & k \\ 4 & k \end{vmatrix} + \begin{vmatrix}  2 & 3 \\ -1 & k \end{vmatrix} = 6\)

\(\begin{vmatrix} k & k \\ 4 & k \end{vmatrix} = (k^{2} - 4k)\)

\(\begin{vmatrix}  2 & 3 \\ -1 & k \end{vmatrix} = (2k + 3)\)

\(\therefore (k^{2} - 4k) + (2k + 3) = k^{2} - 2k + 3 = 6\)

\(k^{2} - 2k - 3 = 0\), factorising, we have \(k + 1 = 0\) or \(k - 3 = 0\)

Since k > 0, k = 3.