1
2
3
4
Correct answer is C
\(\begin{vmatrix} k & k \\ 4 & k \end{vmatrix} + \begin{vmatrix} 2 & 3 \\ -1 & k \end{vmatrix} = 6\)
\(\begin{vmatrix} k & k \\ 4 & k \end{vmatrix} = (k^{2} - 4k)\)
\(\begin{vmatrix} 2 & 3 \\ -1 & k \end{vmatrix} = (2k + 3)\)
\(\therefore (k^{2} - 4k) + (2k + 3) = k^{2} - 2k + 3 = 6\)
\(k^{2} - 2k - 3 = 0\), factorising, we have \(k + 1 = 0\) or \(k - 3 = 0\)
Since k > 0, k = 3.
A force of 30 N acts at an angle of 60° on a body of mass 6 kg initially at rest on a smooth hor...
Evaluate \(\int_{1}^{2} [\frac{x^{3} - 1}{x^{2}}] \mathrm {d} x\)...
Resolve \(\frac{3x - 1}{(x - 2)^{2}}, x \neq 2\) into partial fractions....
Factorize completely: \(x^{2} + x^{2}y + 3x - 10y + 3xy - 10\)....
The distance(s) in metres covered by a particle in motion at any time, t seconds, is given by S...