1
2
3
4
Correct answer is C
\(\begin{vmatrix} k & k \\ 4 & k \end{vmatrix} + \begin{vmatrix} 2 & 3 \\ -1 & k \end{vmatrix} = 6\)
\(\begin{vmatrix} k & k \\ 4 & k \end{vmatrix} = (k^{2} - 4k)\)
\(\begin{vmatrix} 2 & 3 \\ -1 & k \end{vmatrix} = (2k + 3)\)
\(\therefore (k^{2} - 4k) + (2k + 3) = k^{2} - 2k + 3 = 6\)
\(k^{2} - 2k - 3 = 0\), factorising, we have \(k + 1 = 0\) or \(k - 3 = 0\)
Since k > 0, k = 3.
Given that \(x * y = \frac{x + y}{2}, x \circ y = \frac{x^{2}}{y}\) and \((3 * b) \circ&nb...
Express \(\frac{8 - 3\sqrt{6}}{2\sqrt{3} + 3\sqrt{2}}\) in the form \(p\sqrt{3} + q\sqrt{2}\)...
Express \(\frac{x^{2} + x + 4}{(1 - x)(x^{2} + 1)}\) in partial fractions....
If \(16^{3x} = \frac{1}{4}(32^{x - 1})\), find the value of x....
Simplify \(\sqrt{(\frac{-1}{64})^{\frac{-2}{3}}}\)...
If P(x - 3) + Q(x + 1) = 2x + 3, find the value of (P + Q). ...
Given that \(R = (4, 180°)\) and \(S = (3, 300°)\), find the dot product...