\(\frac{1}{3} seconds\)
\(\frac{3}{4} seconds\)
\(\frac{4}{3} seconds\)
\(2 seconds\)
Correct answer is C
Given \(a(t) = 3t - 2\), \(v(t) = \int (a(t)) \mathrm {d} t\)
= \(\int (3t - 2) \mathrm {d} t = \frac{3}{2}t^{2} - 2t\)
\(\frac{3}{2}t^{2} - 2t = 0 \implies t(\frac{3}{2}t - 2) = 0\)
\(t = \text{0 or t} = \frac{3}{2}t - 2 = 0 \implies t = \frac{4}{3}\)
The time t = 0 was the starting point, The next time v = 0 m/s is at \(t = \frac{4}{3} seconds\).
Given that \(y = x(x + 1)^{2}\), calculate the maximum value of y....
Given that \(\frac{\mathrm d y}{\mathrm d x} = \sqrt{x}\), find y....
If \(\frac{5}{\sqrt{2}} - \frac{\sqrt{8}}{8} = m\sqrt{2}\), where m is a constant. Find m....
Find the radius of the circle 2x\(^2\) - 4x + 2y\(^2\) - 6y -2 = 0. ...
Given that \(f '(x) = 3x^{2} - 6x + 1\) and f(3) = 5, find f(x)....