-11
-9
-3
4
Correct answer is C
Using the remainder theorem, the remainder when a polynomial \(ax^{2} + bx + c\) is divided by \((x - a)\) is equal to \(f(a)\).
\(2x^{3} + 3x^{2} + qx - 1\) divided by \((x + 2)\), the remainder = \(f(-2)\)
\(\implies f(-2) = f(1)\)
\(f(-2) = 2(-2^{3}) + 3(-2^{2}) + q(-2) - 1 = -16 + 12 - 2q - 1 = -5 - 2q\)
\(f(1) = 2(1^{3}) + 3(1^{2}) + q(1) - 1 = 2 + 3 + q - 1 = 4 + q\)
\(4 + q = -5 -2q \implies 4 + 5 = -2q - q = -3q\)
\(q = -3\)
Solve 6 sin 2θ tan θ = 4, where 0º < θ < 90º ...
Solve for x in the equation \(5^{x} \times 5^{x + 1} = 25\)...
Solve: 8\(^{x - 2}\) = 4\(^{3x}\)...
Express cos150° in surd form. ...
Find the range of values of x for which \(x^{2} + 4x + 5\) is less than \(3x^{2} - x + 2\)...