\(f^{-1} : x \to \frac{2x + 3}{x - 1}, x \neq 1\)
\(f^{-1} : x \to \frac{x + 3}{x + 2}, x \neq -2\)
\(f^{-1} : x \to \frac{x - 1}{2x + 3}, x \neq -\frac{3}{2}\)
\(f^{-1}: x \to \frac{x - 2}{x + 3}, x \neq -3\)
Correct answer is A
\(f(x) = \frac{x + 3}{x - 2}\)
\(f(y) = \frac{y + 3}{y - 2}\)
Let f(y) = x,
\(x = \frac{y + 3}{y - 2}\)
\(x(y - 2) = y + 3\)
\(xy - y = 2x + 3 \implies y(x - 1) = 2x + 3\)
\(y = \frac{2x + 3}{x - 1}\)
The equation of a circle is \(3x^{2} + 3y^{2} + 6x - 12y + 6 = 0\). Find its radius...
Given that X : R \(\to\) R is defined by x = \(\frac{y + 1}{5 - y}\) , y \(\in\) R, find ...
Three forces, F\(_1\) (8N, 030°), F\(_\2) (10N, 150° ) and F\(_\3) ( KN, 240° ...
Given that \(x^{2} + 4x + k = (x + r)^{2} + 1\), find the value of k and r...
Solve \(3^{2x} - 3^{x+2} = 3^{x+1} - 27\)...
Simplify \(\frac{\sqrt{128}}{\sqrt{32} - 2\sqrt{2}}\)...
If \(T = \begin{pmatrix} -2 & -5 \\ 3 & 8 \end{pmatrix}\), find \(T^{-1}\), the inverse of T...