\(f^{-1} : x \to \frac{2x + 3}{x - 1}, x \neq 1\)
\(f^{-1} : x \to \frac{x + 3}{x + 2}, x \neq -2\)
\(f^{-1} : x \to \frac{x - 1}{2x + 3}, x \neq -\frac{3}{2}\)
\(f^{-1}: x \to \frac{x - 2}{x + 3}, x \neq -3\)
Correct answer is A
\(f(x) = \frac{x + 3}{x - 2}\)
\(f(y) = \frac{y + 3}{y - 2}\)
Let f(y) = x,
\(x = \frac{y + 3}{y - 2}\)
\(x(y - 2) = y + 3\)
\(xy - y = 2x + 3 \implies y(x - 1) = 2x + 3\)
\(y = \frac{2x + 3}{x - 1}\)
Marks 0 1 2 3 4 5 Number of candidates 6 4 8 10 9 3 The table abov...
Find the direction cosines of the vector \(4i - 3j\)....
Simplify \(\frac{^{n}P_{5}}{^{n}C_{5}}\)...
Calculate in surd form, the value of \(\tan 15°\)....
If f(x-1) = x\(^3\) + 3x\(^2\) + 4x - 5, find f(2)...
The gradient ofy= 3x\(^2\) + 11x + 7 at P(x.y) is -1. Find the coordinates of P. ...