\(7\sqrt{3} - \frac{17\sqrt{2}}{3}\)
\(7\sqrt{2} - \frac{17\sqrt{3}}{3}\)
\(-7\sqrt{2} + \frac{17\sqrt{3}}{3}\)
\(-7\sqrt{3} - \frac{17\sqrt{2}}{3}\)
Correct answer is B
Given \(\frac{8 - 3\sqrt{6}}{2\sqrt{3} + 3\sqrt{2}}\),
first, we rationalise by multiplying through with \(2\sqrt{3} - 3\sqrt{2}\) (the inverse of the denominator).
\((\frac{8 - 3\sqrt{6}}{2\sqrt{3} + 3\sqrt{2}})(\frac{2\sqrt{3} - 3\sqrt{2}}{2\sqrt{3} - 3\sqrt{2}})\)
= \(\frac{16\sqrt{3} - 24\sqrt{2} - 18\sqrt{2} + 18\sqrt{3}}{4(3) - 6\sqrt{6} + 6\sqrt{6} - 9(2)}\)
= \(\frac{34\sqrt{3} - 42\sqrt{2}}{-6} = 7\sqrt{2} - \frac{17\sqrt{3}}{3}\)
Evaluate \(\cos (\frac{\pi}{2} + \frac{\pi}{3})\)...
Marks 0 1 2 3 4 5 Number of candidates 6 4 8 10 9 3 The table abov...
If (2t - 3s)(t - s) = 0, find \(\frac{t}{s}\)...
Solve the inequality \(2x^{2} + 5x - 3 \geq 0\)....
Find an expression for y given that \(\frac{\mathrm d y}{\mathrm d x} = x^{2}\sqrt{x}\)...
Solve (\(\frac{1}{9}\))\(^{x + 2}\) = 243\(^{x - 2}\) ...
A stone is thrown vertically upward and distance, S metres after t seconds is given by S = 12t ...
The marks scored by 4 students in Mathematics and Physics are ranked as shown in the table below ...
Find the radius of the circle 2x\(^2\) - 4x + 2y\(^2\) - 6y -2 = 0. ...