\(7\sqrt{3} - \frac{17\sqrt{2}}{3}\)
\(7\sqrt{2} - \frac{17\sqrt{3}}{3}\)
\(-7\sqrt{2} + \frac{17\sqrt{3}}{3}\)
\(-7\sqrt{3} - \frac{17\sqrt{2}}{3}\)
Correct answer is B
Given \(\frac{8 - 3\sqrt{6}}{2\sqrt{3} + 3\sqrt{2}}\),
first, we rationalise by multiplying through with \(2\sqrt{3} - 3\sqrt{2}\) (the inverse of the denominator).
\((\frac{8 - 3\sqrt{6}}{2\sqrt{3} + 3\sqrt{2}})(\frac{2\sqrt{3} - 3\sqrt{2}}{2\sqrt{3} - 3\sqrt{2}})\)
= \(\frac{16\sqrt{3} - 24\sqrt{2} - 18\sqrt{2} + 18\sqrt{3}}{4(3) - 6\sqrt{6} + 6\sqrt{6} - 9(2)}\)
= \(\frac{34\sqrt{3} - 42\sqrt{2}}{-6} = 7\sqrt{2} - \frac{17\sqrt{3}}{3}\)
If \(2, (k+1), 8,...\) form an exponential sequence (GP), find the values of k...
If \(y = 2(2x + \sqrt{x})^{2}\), find \(\frac{\mathrm d y}{\mathrm d x}\)....
Given \(\begin{vmatrix} 2 & -3 \\ 1 & 4 \end{vmatrix} \begin{vmatrix} -6 \\ k...
Find the standard deviation of the numbers 3,6,2,1,7 and 5. ...