Find the unit vector in the direction of (-5i + 12j).
...Find the unit vector in the direction of (-5i + 12j).
\(\frac{1}{13}(-5i - 12j)\)
\(\frac{1}{13}(5i - 12j)\)
\(\frac{1}{13}(-5i + 12j)\)
\(\frac{1}{13}(5i + 12j)\)
Correct answer is C
The unit vector \(\hat{n} = \frac{\overrightarrow{r}}{|r|}\)
\(\hat{n} = \frac{-5i + 12j}{\sqrt{(-5)^{2} + (12)^{2}} \)
= \(\frac{-5i + 12j}{13} \)
Evaluate\({1_0^∫} x^2(x^3+2)^3\)...
Find the coordinates of the centre of the circle 3x\(^2\) + 3y\(^2\) - 6x + 9y - 5 = 0...
Find \(\lim \limits_{x \to 3} \frac{x + 3}{x^{2} - x - 12}\)...
Find the least value of n for which \(^{3n}C_{2} > 0, n \in R\)...
Given that F\(^1\)(x) = x\(^3\)√x, find f(x)...
If \(\begin{vmatrix} 3 & x \\ 2 & x - 2 \end{vmatrix} = -2\), find the value of x....
Express the force F = (8 N, 150°) in the form (a i + b j) where a and b are constants ...