\(\frac {dy}{dx} = \frac {10x^{5/3}}{3} - \frac {8x^{2/3}}{3}\)
\(\frac {dy}{dx} = \frac {10x^{2/3}}{3} - \frac {8x^{5/3}}{3}\)
\(\frac {dy}{dx} = \frac {10x^{5/3}}{3} - \frac {8x^{5/3}}{3}\)
\(\frac {dy}{dx} = \frac {10x^{2/3}}{3} - \frac {8x^{2/3}}{3}\)
Correct answer is B
y = \(\sqrt[3]{x^2(2x - x^2)} = x^{2/3} (2x - x^2)\)
= \(2x^{5/3} - x^{8/3}\)
Now, we can differentiate the function
\(\therefore \frac {dy}{dx} = \frac {10x^{2/3}}{3} - \frac {8x^{5/3}}{3}\)
Simplify: 11011\(_2\) - 1101\(_2\) ...
If \(y = 23_{five} + 101_{three}\), find y, leaving your answer in base two...
Evaluate \(\frac{81.81+99.44}{20.09+36.16}\) correct to 3 significant figures. ...
Solve the equation 3x2 + 6x - 2 = 0 ...
Find correct to 3 decimal places (\(\frac{1}{0.05}\) + \(\frac{1}{5.005}\)) - (0.05 x 2.05)...