Find \(\alpha\) and \(\beta\) such that x\(\frac{3}{8}\) x y\(\frac{-6}{7}\) x (\(\frac{y^{\frac{9}{7}}}{x^{\frac{45}{8}}}\))\(\frac{1}{9}\) = \(\frac{y^{\alpha}}{y^{\beta}}\)

A.

\(\alpha\) = 1, \(\beta\) = \(\frac{5}{7}\)

B.

\(\alpha\)= 1, \(\beta\) = -\(\frac{5}{7}\)

C.

\(\alpha\)= \(\frac{3}{5}\), \(\beta\) = -6

D.

\(\alpha\)= 1, \(\beta\) = -\(\frac{3}{5}\)

Correct answer is A

x\(\frac{3}{8}\) x y\(\frac{-6}{7}\) x (\(\frac{y^{\frac{9}{7}}}{x^{\frac{45}{8}}}\))\(\frac{1}{9}\) = \(\frac{y^{\alpha}}{y^{\beta}}\)

x\(\frac{3}{8}\) x y\(\frac{-6}{7}\) x y\(\frac{1}{7}\) = x\(\alpha\)

= x\(\frac{3}{8}\) + \(\frac{5}{8}\) + y\(\frac{6}{7}\) + \(\frac{1}{7}\)

= x\(\alpha\)y\(\beta\)

x1y\(\frac{-5}{7}\) = x\(\alpha\)y\(\beta\)

\(\alpha\) = 1, \(\beta\) = \(\frac{5}{7}\)