\(\alpha\) = 1, \(\beta\) = \(\frac{5}{7}\)
\(\alpha\)= 1, \(\beta\) = -\(\frac{5}{7}\)
\(\alpha\)= \(\frac{3}{5}\), \(\beta\) = -6
\(\alpha\)= 1, \(\beta\) = -\(\frac{3}{5}\)
Correct answer is A
x\(\frac{3}{8}\) x y\(\frac{-6}{7}\) x (\(\frac{y^{\frac{9}{7}}}{x^{\frac{45}{8}}}\))\(\frac{1}{9}\) = \(\frac{y^{\alpha}}{y^{\beta}}\)
x\(\frac{3}{8}\) x y\(\frac{-6}{7}\) x y\(\frac{1}{7}\) = x\(\alpha\)
= x\(\frac{3}{8}\) + \(\frac{5}{8}\) + y\(\frac{6}{7}\) + \(\frac{1}{7}\)
= x\(\alpha\)y\(\beta\)
x1y\(\frac{-5}{7}\) = x\(\alpha\)y\(\beta\)
\(\alpha\) = 1, \(\beta\) = \(\frac{5}{7}\)
Find the derivative of y = ( \(\frac{1}{3}\)X + 6)\(^2\)...
In the diagram, POR is a circle with center O. ∠QPR = 50°, ∠PQO = 30° and ∠...
\(\begin{array}{c|c} \text{Average hourly earnings(N)} & 5 - 9 & 10 - 14 & 15 - 19 &...
If the lines 2y - kx + 2 = 0 and y + x - k/2 = 0 Intersect at (1, -2), find the value of k...
If y = 2x2 + 9x - 35. Find the range of values for which y < 0....