The positive root of t in the following equation, 4t2 + 7t - 1 = 0, correct to 4 places of decimal, is

A.

1.0622

B.

10.6225

C.

0.1328

D.

0.3218

E.

2.0132

Correct answer is C

\(4t^{2} + 7t - 1 = 0\)

Using a = 4, b = 7, c = -1.

\(x = \frac{-b \pm \sqrt{b^{2} - 4ac}}{2a}\)

= \(\frac{-7 \pm \sqrt{7^{2} - 4(4)(-1)}}{2(4)}\)

= \(\frac{-7 \pm \sqrt{49 + 16}}{8}\)

= \(\frac{-7 \pm \sqrt{65}}{8}\)

= \(\frac{-7 \pm 8.0623}{8}\)

The positive answer = \(\frac{-7 + 8.0623}{8} = \frac{1.0623}{8}\)

\(\approxeq 0.1328\) (4 decimal place)