In the diagram, O is the center of the circle QRS and ∠SQR = 28°. Find ∠ORS.

In the diagram, O is the center of the circle QRS and ∠SQR = 28°. Find ∠ORS.

A.

\(56^0\)

B.

\(28^0\)

C.

\(76^0\)

D.

\(62^0\)

Correct answer is D

∠SOR = 2 × 28° = 56° (angle at the centre is twice the angle at the circumference)
From ∆SOR
|OS| = |OR| (radii)
So, ∆SOR is isosceles.

ORS = \(\frac{180^0 -  56^0}{2} = \frac{124^0}{2}\)    ( base angles of isosceles triangle are equal)

∴ ∠ORS = 62°