If the quadratic function 3x2 - 7x + R is a perfect square, find R

A.

\(\frac{49}{24}\)

B.

\(\frac{49}{12}\)

C.

\(\frac{49}{13}\)

D.

\(\frac{49}{3}\)

E.

\(\frac{49}{36}\)

Correct answer is B

3x2 - 7x + R. Computing the square, we have
x2 - \(\frac{7}{3}\) = -\(\frac{R}{3}\)

(\(\frac{x}{1} - \frac{7}{6}\))2 = -\(\frac{R}{3}\) + \(\frac{49}{36}\)

\(\frac{-R}{3}\) + \(\frac{49}{36}\) = 0

R = \(\frac{49}{36}\) x \(\frac{3}{1}\)

= \(\frac{49}{12}\)