The interior angles of a quadrilateral are (x + 15)°, (2x - 45)°, ( x - 30)° and (x + 10)°. Find the value of the least interior angle.

A.

112o

B.

102o

C.

82o

D.

52o

Correct answer is D

(x + 15)° + (2x - 45)° + (x + 10)° = (2n - 4)90°

when n = 4

x + 15° + 2x - 45° + x - 30° + x + 10° = (2 x 4 - 4) 90°

5x - 50° = (8 - 4)90°

5x - 50° = 4 x 90° = 360°

5x = 360° + 50°

5x = 410°

x = \(\frac{410^o}{5}\)

= 82°

Hence, the value of the least interior angle is (x - 30°)

= (82 - 30)°

= 52°