How good are you with figures and formulas? Find out with these Mathematics past questions and answers. This Test is useful for both job aptitude test candidates and students preparing for JAMB, WAEC, NECO or Post UTME.
If S = \(\sqrt{t^2 - 4t + 4}\), find t in terms of S
S2 - 2
S + 2
S - 2
S2 + 2
Correct answer is B
S = \(\sqrt{t^2 - 4t + 4}\)
S2 = t2 - 4t + 4
t2 - 4t + 4 - S2 = 0
Using \(t = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}\)
Substituting, we have;
Using \(t = \frac{-(-4) \pm \sqrt{(-4)^2 - 4(1)(4 - S^2)}}{2(1)}\)
\(t = \frac{4 \pm \sqrt{16 - 4(4 - S^2)}}{2}\)
\(t = \frac{4 \pm \sqrt{16 - 16 + 4S^2}}{2}\)
\(t = \frac{4 \pm \sqrt{4S^2}}{2}\)
\(t = \frac{2(2 \pm S)}{2}\)
Hence t = 2 + S or t = 2 - S
{3,5,7,11,17,19}
{3,5,11,13,17,19}
{3,5,7,11,13,17,19}
{2,3,5,7,11,13,17,19}
Correct answer is C
P = {1, 3, 5, 7, 9, 11, 13, 15, 17, 19}
Q = {-1, 3, 5, 7, 11, 13, 17, 19, 23}
P \(\cap\) Q = {3, 5, 7, 11, 13, 17, 19}
Simplify \(\frac{\sqrt{5}(\sqrt{147} - \sqrt{12}}{\sqrt{15}}\)
5
\(\frac{1}{5}\)
\(\frac{1}{9}\)
9
Correct answer is A
\(\frac{\sqrt{5}(\sqrt{147} - \sqrt{12}}{\sqrt{15}}\)
\(\frac{\sqrt{5}(\sqrt{49 \times 3} - \sqrt{4 \times 3}}{\sqrt{5 \times 3}}\)
\(\frac{\sqrt{5}(7\sqrt{3} - 2\sqrt{3}}{\sqrt{5} \times \sqrt{3}}\)
\(\frac{\sqrt{3} (7 - 2}{\sqrt{3}}\)
= 5
If log104 = 0.6021, evaluate log1041/3
0.3011
0.9021
1.8063
0.2007
Correct answer is D
log1041/3 = 1/3 log104
= 1/3 x 0.6021
= 0.2007
Simplify \(\frac{3^{-5n}}{9^{1-n}} \times 27^{n + 1}\)
32
33
35
3
Correct answer is D
\(\frac{3^{-5n}}{9^{1-n}} \times 27^{n + 1}\)
\(\frac{3^{-5n}}{3^{2(1-n)}} \times 3^{3(n + 1)}\)
\(3^{-5n} \div 3^{2(1-n)} \times 3^{3(n + 1)}\)
\(3^{-5n - 2(1-n) + 3(n + 1)}\)
\(3^{-5n - 2 + 2n + 3n + 3}\)
\(3^{-5n + 5n + 3 - 2}\)
\(3^{1}\)
= 3