S2 - 2
S + 2
S - 2
S2 + 2
Correct answer is B
S = \(\sqrt{t^2 - 4t + 4}\)
S2 = t2 - 4t + 4
t2 - 4t + 4 - S2 = 0
Using \(t = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}\)
Substituting, we have;
Using \(t = \frac{-(-4) \pm \sqrt{(-4)^2 - 4(1)(4 - S^2)}}{2(1)}\)
\(t = \frac{4 \pm \sqrt{16 - 4(4 - S^2)}}{2}\)
\(t = \frac{4 \pm \sqrt{16 - 16 + 4S^2}}{2}\)
\(t = \frac{4 \pm \sqrt{4S^2}}{2}\)
\(t = \frac{2(2 \pm S)}{2}\)
Hence t = 2 + S or t = 2 - S
If cos x = 4/5, 0° \( \leq \) x \( \leq \) 90°, find the value of (1 + tan x)/(1 - tan x)...
Find the value of the angle marked x in the diagram above ...
Make c the subject of formula v = 1 - \(\frac{a}{5}\)(b + \(\frac{3c}{7}\))...
Solve the equation: \(y - 11\sqrt{y} + 24 = 0\)...
Simplify; 3x - (p - x) - (r - p)...
If y = x Sin x, find \(\frac{dy}{dx}\) when x = \(\frac{\pi}{2}\)...
Given that 10x = 0.2 and log102 = 0.3010, find x ...
Find the value of X if \(cos x = \frac{5}{8}\) for \(0^o\le X\le 180^o\)...