5
\(\frac{1}{5}\)
\(\frac{1}{9}\)
9
Correct answer is A
\(\frac{\sqrt{5}(\sqrt{147} - \sqrt{12}}{\sqrt{15}}\)
\(\frac{\sqrt{5}(\sqrt{49 \times 3} - \sqrt{4 \times 3}}{\sqrt{5 \times 3}}\)
\(\frac{\sqrt{5}(7\sqrt{3} - 2\sqrt{3}}{\sqrt{5} \times \sqrt{3}}\)
\(\frac{\sqrt{3} (7 - 2}{\sqrt{3}}\)
= 5
What must be added to 3x2 - 5x to make it a perfect square?...
Evaluate Log28 + Log216 - Log24...
If a = 1, b = 3, solve for x in the equation \(\frac{a}{a - x}\) = \(\frac{b}{x - b}\)...
Find the equation of the tangent at the point (2, 0) to the curve y = x\(^2\) - 2x...
Rationalize \(\frac{5\sqrt{7} - 7\sqrt{5}}{\sqrt{7} - \sqrt{5}}\) ...