Mathematics questions and answers

Mathematics Questions and Answers

How good are you with figures and formulas? Find out with these Mathematics past questions and answers. This Test is useful for both job aptitude test candidates and students preparing for JAMB, WAEC, NECO or Post UTME.

1,946.

Solve for x, If \(\frac{\frac{2}{x}}{\frac{1}{p^2} + \frac{1}{p^2}}\) = m

A.

\(\frac{4pq}{m(p + q)}\)

B.

\(\frac{2p^2q^2}{m(q^2 + p^2)}\)

C.

\(\frac{2pq}{m(q^2 + p^2)}\)

D.

\(\frac{2p^2q^2}{m(p^2)}\)

Correct answer is B

\(\frac{1}{p^2}\) + \(\frac{1}{q^2}\) = \(\frac{q^2 + p^2}{p^2 + q^2}\)

\(\frac{\frac{2}{x}}{\frac{p^2 + q^2}{p^2 q^2}}\)

m = \(\frac{2p^2q^2}{x(p^2 + q^2)}\)

= m2p2q2 = m x (p2 + q2)

x = \(\frac{2p^2q^2}{m(q^2 + p^2)}\)

1,947.

The currency used in a country is called 'Matimalik'(M) and is of base seven. A lady in that country bought 4 bags of rice at M56 per bag and and 3 tins of milk at M4 per tin. What is the total cost of the item she bought?

A.

M2467

B.

M2427

C.

M2367

D.

M3417

E.

M3387

Correct answer is D

4 bags of rice - M 56 each

3 tins of milk - M 4 each

\(M 56 \times 4 = M 323\)

\(M 4 \times 3 = M 15\)

\(M (323 + 15) = M 341\)

 

1,948.

If sin \(\theta\) = \(\frac{m - n}{m + n}\); Find the value of 1 + tan2\(\theta\)

A.

\(\frac{(m^2 + n^2)}{m + n}\)

B.

\(\frac{(m^2 + n^2 + 2mn)}{4mn}\)

C.

\(\frac{2(m^2 + n^2 + mn)}{m + n}\)

D.

\(\frac{(m^2 + n^2 + mn)}{m + n}\)

Correct answer is B

\((m + n)^{2} = (m - n)^{2} + x^{2}\)

\(m^{2} + 2mn + n^{2} = m^{2} - 2mn + n^{2} + x^{2}\)

\(x^{2} = 4mn\)

\(x = \sqrt{4mn} = 2\sqrt{mn}\)

1 + tan2\(\theta\) = sec2\(\theta\)

= \(\frac{1}{cos^2\theta}\)

\(\cos \theta = \frac{2\sqrt{mn}}{(m + n)}\)

\(\frac{1}{\cos \theta} = \frac{(m + n)}{2\sqrt{mn}}\)

\(\sec^{2} \theta = \frac{(m + n)^{2}}{4mn}\)

= \(\frac{(m^2 + n^2 + 2mn)}{4mn}\)

1,949.

Given that p:q = \(\frac{1}{3}\):\(\frac{1}{2}\) and q:r = \(\frac{2}{5}\), find p:r

A.

4:105

B.

7:15

C.

20:21

D.

2:35

E.

3:20

Correct answer is B

\(p : q = \frac{1}{3} : \frac{1}{2}\)

\(\frac{p}{q} = \frac{2}{3}\)

\(2q = 3p ... (1)\)

\(q : r = \frac{2}{5} : \frac{4}{7}\)

\(\frac{q}{r} = \frac{2}{5} \times \frac{7}{4} = \frac{7}{10}\)

\(10q = 7r ... (2)\)

Eliminating q, we have

(1) : \(2q = 3p \)

\(10q = 15p\)

\(\implies 15p = 7r\)

\(\therefore \frac{p}{r} = \frac{7}{15}\)

\(p : r = 7 : 15\)

1,950.

A sector of a circle is bounded by two radii 7cm long and an arc length 6cm. Find the area of the sector.

A.

42cm2

B.

3cm2

C.

21cm2

D.

24cm2

E.

12cm2

Correct answer is C

Length of arc = \(\frac{\theta}{360}\) x 2\(\pi\)r = 6

\(\theta\) x 2\(\pi\)r = 360 x 6

\(\theta\) = \(\frac{360 \times 6}{2\pi r}\)

Area of the sector = \(\frac{\theta}{360}\) x \(\pi\)r2

\(\frac{360 \times 6}{2\pi r}\) x \(\frac{1}{360}\) x \(\pi\)r2 = r

= 3 x 7

= 21cm2