42cm2
3cm2
21cm2
24cm2
12cm2
Correct answer is C
Length of arc = \(\frac{\theta}{360}\) x 2\(\pi\)r = 6
\(\theta\) x 2\(\pi\)r = 360 x 6
\(\theta\) = \(\frac{360 \times 6}{2\pi r}\)
Area of the sector = \(\frac{\theta}{360}\) x \(\pi\)r2
\(\frac{360 \times 6}{2\pi r}\) x \(\frac{1}{360}\) x \(\pi\)r2 = r
= 3 x 7
= 21cm2
In the diagram above, O is the center of the circle with radius 10cm, and ∠ABC = 30°. Calcul...
If b = a + cp and r = ab + \(\frac{1}{2}\)cp2, express b2 in terms of a, c, r....
Evaluate \(\frac{log8}{log\left(\frac{1}{4}\right)}\)...
Simplify \(7\frac{1}{12}-4\frac{3}{4}+2\frac{1}{2}\) ...
Find the value of x in the figure above ...