\(\frac{(m^2 + n^2)}{m + n}\)
\(\frac{(m^2 + n^2 + 2mn)}{4mn}\)
\(\frac{2(m^2 + n^2 + mn)}{m + n}\)
\(\frac{(m^2 + n^2 + mn)}{m + n}\)
Correct answer is B
\((m + n)^{2} = (m - n)^{2} + x^{2}\)
\(m^{2} + 2mn + n^{2} = m^{2} - 2mn + n^{2} + x^{2}\)
\(x^{2} = 4mn\)
\(x = \sqrt{4mn} = 2\sqrt{mn}\)
1 + tan2\(\theta\) = sec2\(\theta\)
= \(\frac{1}{cos^2\theta}\)
\(\cos \theta = \frac{2\sqrt{mn}}{(m + n)}\)
\(\frac{1}{\cos \theta} = \frac{(m + n)}{2\sqrt{mn}}\)
\(\sec^{2} \theta = \frac{(m + n)^{2}}{4mn}\)
= \(\frac{(m^2 + n^2 + 2mn)}{4mn}\)
If α and β are the roots of the equation 3x\(^2\) + 5x - 2 = 0, find the value of 1/&alph...
If cos x = - \(\frac{5}{13}\) where 180° < X < 270°, what is the value of tan x -sin x...
The maximum value of the function f(x) = 2 + x - x2 is ...
If -8, m, n, 19 are in arithmetic progression, find (m, n)...
Factorize \( x^2 − 2x − 15 \)...
Calculate the gradient (slope) of the joining points (-1, 1) and (2, -2) ...
P(-6, 1) and Q(6, 6) are the two ends of the diameter of a given circle. Calculate the radius. ...