\(\frac{(m^2 + n^2)}{m + n}\)
\(\frac{(m^2 + n^2 + 2mn)}{4mn}\)
\(\frac{2(m^2 + n^2 + mn)}{m + n}\)
\(\frac{(m^2 + n^2 + mn)}{m + n}\)
Correct answer is B
\((m + n)^{2} = (m - n)^{2} + x^{2}\)
\(m^{2} + 2mn + n^{2} = m^{2} - 2mn + n^{2} + x^{2}\)
\(x^{2} = 4mn\)
\(x = \sqrt{4mn} = 2\sqrt{mn}\)
1 + tan2\(\theta\) = sec2\(\theta\)
= \(\frac{1}{cos^2\theta}\)
\(\cos \theta = \frac{2\sqrt{mn}}{(m + n)}\)
\(\frac{1}{\cos \theta} = \frac{(m + n)}{2\sqrt{mn}}\)
\(\sec^{2} \theta = \frac{(m + n)^{2}}{4mn}\)
= \(\frac{(m^2 + n^2 + 2mn)}{4mn}\)
Convert the decimal number 89 to a binary number ...
Solve \(5^{2(x - 1)} \times 5^{x + 1} = 0.04\)...
Simplify \(\frac{2-18m^2}{1+3m}\) ...
If m = 4, n = 9 and r = 16., evaluate \(\frac{m}{n}\) - 1\(\frac{7}{9}\) + \(\frac{n}{r}\)...
Find the equation of the locus of a point P(x,y) which is equidistant from Q(0,0) and R(2,1). ...