Mathematics questions and answers

Mathematics Questions and Answers

How good are you with figures and formulas? Find out with these Mathematics past questions and answers. This Test is useful for both job aptitude test candidates and students preparing for JAMB, WAEC, NECO or Post UTME.

391.

If m : n = 2 : 1, evaluate \(\frac{3m^2 - 2n^2}{m^2 + mn}\)

A.

\(\frac{4}{3}\)

B.

\(\frac{5}{3}\)

C.

\(\frac{3}{4}\)

D.

\(\frac{3}{5}\)

Correct answer is B

m = 2, n = 1

\(\frac{3m^2 - 2n^2}{m^2 _ mn}\)

= \(\frac{3(2)^2 - 2(1)^2}{2^2 + 2(1)}\)

= \(\frac{12 - 2}{4 + 2} = \frac{10}{6}\)

= \(\frac{5}{3}\)

392.

Evaluate: 2\(\sqrt{28} - 3\sqrt{50} + \sqrt{72}\)  

A.

4\(\sqrt{7} - 21 \sqrt{2}\)

B.

4\(\sqrt{7} - 11 \sqrt{2}\)

C.

4\(\sqrt{7} - 9 \sqrt{2}\)

D.

4\(\sqrt{7} + \sqrt{2}\)

Correct answer is C

2\(\sqrt{28} - 3\sqrt{50} + \sqrt{22}\)

4\(\sqrt{7} - 15\sqrt{2} + 6\sqrt{2}\)

6\(\sqrt{7} - 9\sqrt{2}\)

393.

If 6, P, and 14 are consecutive terms in an Arithmetic Progression (AP), find the value of P.

A.

9

B.

10

C.

6

D.

8

Correct answer is B

6, p, 14

14 - p = p - 6 

14 + 6 = p - 6

14 + 6 = p + p

\(\frac{2p}{2}\)

= \(\frac{20}{2}\) 

p = 10

394.

If 23\(_y\) = 1111\(_{\text{two}}\), find the value of y

A.

4

B.

5

C.

6

D.

7

Correct answer is C

23\(_y\) = 1111\(_{\text{two}}\),

2 x y\(^1\) + 3 x y\(^0\) = 1 x 2\(^3\) + 1 x 2\(^1\) + 1 x 2\(^o\) 

2y + 3 = 8 + 4 + 2 + 1 

2y + 3 = 15 

\(\frac{2y}{2}\)

\(\frac{12}{2}\) 

y = 6

395.

Evaluate; \(\frac{\log_3 9 - \log_2 8}{\log_3 9}\) 

A.

-\(\frac{1}{3}\)

B.

\(\frac{1}{2}\)

C.

\(\frac{1}{3}\)

D.

-\(\frac{1}{2}\)

Correct answer is D

\(\frac{\log_3 9 - \log_2 8}{\log_3 9}\) 

= \(\frac{\log_3 3^2 - \log_2  2^3}{\log_3 3^2}\) 

= \(\frac{2 -3}{2}\)

= \(\frac{-1}{2}\)