How good are you with figures and formulas? Find out with these Mathematics past questions and answers. This Test is useful for both job aptitude test candidates and students preparing for JAMB, WAEC, NECO or Post UTME.
Solve for x, If \(\frac{\frac{2}{x}}{\frac{1}{p^2} + \frac{1}{p^2}}\) = m
\(\frac{4pq}{m(p + q)}\)
\(\frac{2p^2q^2}{m(q^2 + p^2)}\)
\(\frac{2pq}{m(q^2 + p^2)}\)
\(\frac{2p^2q^2}{m(p^2)}\)
Correct answer is B
\(\frac{1}{p^2}\) + \(\frac{1}{q^2}\) = \(\frac{q^2 + p^2}{p^2 + q^2}\)
\(\frac{\frac{2}{x}}{\frac{p^2 + q^2}{p^2 q^2}}\)
m = \(\frac{2p^2q^2}{x(p^2 + q^2)}\)
= m2p2q2 = m x (p2 + q2)
x = \(\frac{2p^2q^2}{m(q^2 + p^2)}\)
M2467
M2427
M2367
M3417
M3387
Correct answer is D
4 bags of rice - M 56 each
3 tins of milk - M 4 each
\(M 56 \times 4 = M 323\)
\(M 4 \times 3 = M 15\)
\(M (323 + 15) = M 341\)
If sin \(\theta\) = \(\frac{m - n}{m + n}\); Find the value of 1 + tan2\(\theta\)
\(\frac{(m^2 + n^2)}{m + n}\)
\(\frac{(m^2 + n^2 + 2mn)}{4mn}\)
\(\frac{2(m^2 + n^2 + mn)}{m + n}\)
\(\frac{(m^2 + n^2 + mn)}{m + n}\)
Correct answer is B
\((m + n)^{2} = (m - n)^{2} + x^{2}\)
\(m^{2} + 2mn + n^{2} = m^{2} - 2mn + n^{2} + x^{2}\)
\(x^{2} = 4mn\)
\(x = \sqrt{4mn} = 2\sqrt{mn}\)
1 + tan2\(\theta\) = sec2\(\theta\)
= \(\frac{1}{cos^2\theta}\)
\(\cos \theta = \frac{2\sqrt{mn}}{(m + n)}\)
\(\frac{1}{\cos \theta} = \frac{(m + n)}{2\sqrt{mn}}\)
\(\sec^{2} \theta = \frac{(m + n)^{2}}{4mn}\)
= \(\frac{(m^2 + n^2 + 2mn)}{4mn}\)
Given that p:q = \(\frac{1}{3}\):\(\frac{1}{2}\) and q:r = \(\frac{2}{5}\), find p:r
4:105
7:15
20:21
2:35
3:20
Correct answer is B
\(p : q = \frac{1}{3} : \frac{1}{2}\)
\(\frac{p}{q} = \frac{2}{3}\)
\(2q = 3p ... (1)\)
\(q : r = \frac{2}{5} : \frac{4}{7}\)
\(\frac{q}{r} = \frac{2}{5} \times \frac{7}{4} = \frac{7}{10}\)
\(10q = 7r ... (2)\)
Eliminating q, we have
(1) : \(2q = 3p \)
\(10q = 15p\)
\(\implies 15p = 7r\)
\(\therefore \frac{p}{r} = \frac{7}{15}\)
\(p : r = 7 : 15\)
42cm2
3cm2
21cm2
24cm2
12cm2
Correct answer is C
Length of arc = \(\frac{\theta}{360}\) x 2\(\pi\)r = 6
\(\theta\) x 2\(\pi\)r = 360 x 6
\(\theta\) = \(\frac{360 \times 6}{2\pi r}\)
Area of the sector = \(\frac{\theta}{360}\) x \(\pi\)r2
\(\frac{360 \times 6}{2\pi r}\) x \(\frac{1}{360}\) x \(\pi\)r2 = r
= 3 x 7
= 21cm2