Further Mathematics questions and answers

Further Mathematics Questions and Answers

Test your knowledge of advanced level mathematics with this aptitude test. This test comprises Further Maths questions and answers from past JAMB and WAEC examinations.

386.

If \(\begin{vmatrix} 3 & x \\ 2 & x - 2 \end{vmatrix} = -2\), find the value of x.

A.

-8

B.

4

C.

-4

D.

8

Correct answer is A

\(\begin{vmatrix} 3 & x \\ 2 & x - 2 \end{vmatrix} = 3(x - 2) - 2x = -2\)

\(3x - 6 - 2x = -2 \implies x - 6 = -2\)

\(x = -2 + 6 = 4\)

387.

Evaluate \(\int_{1}^{2} \frac{4}{x^{3}} \mathrm {d} x\)

A.

\(-1\frac{1}{2}\)

B.

\(-\frac{15}{16}\)

C.

\(\frac{15}{16}\)

D.

\(1\frac{1}{2}\)

Correct answer is D

\(\int \frac{4}{x^{3}} \mathrm {d} x = \int 4x^{-3} \mathrm {d} x\)

\(\frac{4x^{-3 + 1}}{-2} = -2x^{-2}|_{1}^{2} = \frac{-2}{x^{2}}|_{1}^{2}\)

= \(\frac{-2}{2^{2}}  - \frac{-2}{1^{2}} = -\frac{1}{2}  + 2 = 1\frac{1}{2}\)

388.

Calculate, correct to one decimal place, the acute angle between the lines 3x - 4y + 5 = 0 and 2x + 3y - 1 = 0.

A.

70.6°

B.

50.2°

C.

39.8°

D.

19.4°

Correct answer is A

\(\tan \theta = \frac{m_{1} - m_{2}}{1 - m_{1}m_{2}}\)

\(m_{1} = \text{slope of 1st line } 4y = 3x + 5 \implies y = \frac{3}{4}x + \frac{5}{4}\)

\(m_{1} = \frac{3}{4}\)

\(m_{2} = \text{slope of 2nd line} 3y = 1 - 2x \implies y = \frac{1}{3} - \frac{2}{3}x\)

\(m_{2} = -\frac{2}{3}\)

\(\tan \theta = \frac{\frac{3}{4} - (-\frac{2}{3})}{1 - ((\frac{3}{4})(-\frac{2}{3}))} = \frac{\frac{17}{12}}{\frac{1}{2}}\)

\(\tan \theta = \frac{17}{6}\)

\(\theta \approxeq 70.6°\)

389.

If \(y = 2(2x + \sqrt{x})^{2}\), find \(\frac{\mathrm d y}{\mathrm d x}\).

A.

\(2\sqrt{x}(2x + \sqrt{2})\)

B.

\(4(2x + \sqrt{x})(2 + \frac{1}{2\sqrt{x}})\)

C.

\(4(2x + \sqrt{x})(2 + \sqrt{x})\)

D.

\(8(2x + \sqrt{x})(2 + \sqrt{x})\)

Correct answer is B

\(y = 2(2x + \sqrt{x})^{2}\)

Let \(u = 2x + \sqrt{x}\)

\(y = 2u^{2}\)

\(\frac{\mathrm d y}{\mathrm d u} = 4u\)

\(\frac{\mathrm d u}{\mathrm d x} = 2 + \frac{1}{2\sqrt{x}}\)

\(\therefore \frac{\mathrm d y}{\mathrm d x} = (\frac{\mathrm d y}{\mathrm d u})(\frac{\mathrm d u}{\mathrm d x})\)

= \(4u(2 + \frac{1}{2\sqrt{x}}) \)

= \(4(2x + \sqrt{x})(2 + \frac{1}{2\sqrt{x}})\)

390.

Calculate, correct to one decimal place, the length of the line joining points X(3, 5) and Y(5, 1).

A.

4.0

B.

4.2

C.

4.5

D.

5.0

Correct answer is C

\(XY = \sqrt{(x_{1} - x_{2})^{2} + (y_{1} - y_{2})^{2}}\) is the distance between a point \(X(x_{1}, y_{1})\) and \(Y(x_{2}, y_{2})\).

\(XY = \sqrt{(3 - 5)^{2} + (5 - 1)^{2}} = \sqrt{20}\)

= \(2\sqrt{5} = 4. 467 \approxeq 4.5\)