Processing math: 37%
Further Mathematics questions and answers

Further Mathematics Questions and Answers

Test your knowledge of advanced level mathematics with this aptitude test. This test comprises Further Maths questions and answers from past JAMB and WAEC examinations.

386.

Evaluate 214x3dx

A.

112

B.

1516

C.

1516

D.

112

Correct answer is D

4x3dx=4x3dx

4x3+12=2x2|21=2x2|21

= 222212=12+2=112

387.

Calculate, correct to one decimal place, the acute angle between the lines 3x - 4y + 5 = 0 and 2x + 3y - 1 = 0.

A.

70.6°

B.

50.2°

C.

39.8°

D.

19.4°

Correct answer is A

tanθ=m1m21m1m2

m1=slope of 1st line 4y=3x+5y=34x+54

m1=34

m2=slope of 2nd line3y=12xy=1323x

m2=23

tanθ=34(23)1((34)(23))=171212

tanθ=176

\theta \approxeq 70.6°

388.

If y = 2(2x + \sqrt{x})^{2}, find \frac{\mathrm d y}{\mathrm d x}.

A.

2\sqrt{x}(2x + \sqrt{2})

B.

4(2x + \sqrt{x})(2 + \frac{1}{2\sqrt{x}})

C.

4(2x + \sqrt{x})(2 + \sqrt{x})

D.

8(2x + \sqrt{x})(2 + \sqrt{x})

Correct answer is B

y = 2(2x + \sqrt{x})^{2}

Let u = 2x + \sqrt{x}

y = 2u^{2}

\frac{\mathrm d y}{\mathrm d u} = 4u

\frac{\mathrm d u}{\mathrm d x} = 2 + \frac{1}{2\sqrt{x}}

\therefore \frac{\mathrm d y}{\mathrm d x} = (\frac{\mathrm d y}{\mathrm d u})(\frac{\mathrm d u}{\mathrm d x})

= 4u(2 + \frac{1}{2\sqrt{x}})

= 4(2x + \sqrt{x})(2 + \frac{1}{2\sqrt{x}})

389.

Calculate, correct to one decimal place, the length of the line joining points X(3, 5) and Y(5, 1).

A.

4.0

B.

4.2

C.

4.5

D.

5.0

Correct answer is C

XY = \sqrt{(x_{1} - x_{2})^{2} + (y_{1} - y_{2})^{2}} is the distance between a point X(x_{1}, y_{1}) and Y(x_{2}, y_{2}).

XY = \sqrt{(3 - 5)^{2} + (5 - 1)^{2}} = \sqrt{20}

= 2\sqrt{5} = 4. 467 \approxeq 4.5

390.

For what values of x is \frac{x^{2} - 9x + 18}{x^{2} + 2x - 35} undefined?

A.

6 or 3

B.

-18 or -9

C.

-7 or 5

D.

-5 or 7

Correct answer is C

An fraction is undefined when the denominator has value = 0.

\frac{x^{2} - 9x + 18}{x^{2} + 2x - 35} is undefined when x^{2} + 2x - 35 = 0

x^2 + 7x - 5x - 35 = 0 \implies (x + 7)(x - 5) = 0

x = \text{-7 or 5}