Test your knowledge of advanced level mathematics with this aptitude test. This test comprises Further Maths questions and answers from past JAMB and WAEC examinations.
−112
−1516
1516
112
Correct answer is D
∫4x3dx=∫4x−3dx
4x−3+1−2=−2x−2|21=−2x2|21
= −222−−212=−12+2=112
If y = 2(2x + \sqrt{x})^{2}, find \frac{\mathrm d y}{\mathrm d x}.
2\sqrt{x}(2x + \sqrt{2})
4(2x + \sqrt{x})(2 + \frac{1}{2\sqrt{x}})
4(2x + \sqrt{x})(2 + \sqrt{x})
8(2x + \sqrt{x})(2 + \sqrt{x})
Correct answer is B
y = 2(2x + \sqrt{x})^{2}
Let u = 2x + \sqrt{x}
y = 2u^{2}
\frac{\mathrm d y}{\mathrm d u} = 4u
\frac{\mathrm d u}{\mathrm d x} = 2 + \frac{1}{2\sqrt{x}}
\therefore \frac{\mathrm d y}{\mathrm d x} = (\frac{\mathrm d y}{\mathrm d u})(\frac{\mathrm d u}{\mathrm d x})
= 4u(2 + \frac{1}{2\sqrt{x}})
= 4(2x + \sqrt{x})(2 + \frac{1}{2\sqrt{x}})
Calculate, correct to one decimal place, the length of the line joining points X(3, 5) and Y(5, 1).
4.0
4.2
4.5
5.0
Correct answer is C
XY = \sqrt{(x_{1} - x_{2})^{2} + (y_{1} - y_{2})^{2}} is the distance between a point X(x_{1}, y_{1}) and Y(x_{2}, y_{2}).
XY = \sqrt{(3 - 5)^{2} + (5 - 1)^{2}} = \sqrt{20}
= 2\sqrt{5} = 4. 467 \approxeq 4.5
For what values of x is \frac{x^{2} - 9x + 18}{x^{2} + 2x - 35} undefined?
6 or 3
-18 or -9
-7 or 5
-5 or 7
Correct answer is C
An fraction is undefined when the denominator has value = 0.
\frac{x^{2} - 9x + 18}{x^{2} + 2x - 35} is undefined when x^{2} + 2x - 35 = 0
x^2 + 7x - 5x - 35 = 0 \implies (x + 7)(x - 5) = 0
x = \text{-7 or 5}