n - 5
n - 3
2n - 1
2n - 3
Correct answer is D
\(\frac{^{n}P_{3}}{^{n}C_{2}} + ^{n}P_{0}\)
\(\frac{^{n}P_{3}}{^{n}C_{2}} = \frac{n!}{(n - 3)!} ÷ \frac{n!}{(n - 2)! 2!}\)
\(\frac{n!}{(n - 3)!} \times \frac{(n - 2)(n - 3)! 2!}{n!} = 2n - 4\)
\(^{n}P_{0} = \frac{n!}{(n - 0)!} = 1\)
\(\frac{^{n}P_{3}}{^{n}C_{2}} + ^{n}P_{0} = 2n - 4 + 1 = 2n - 3\)
Evaluate \(\int_{1}^{2} (2 + 2x - 3x^{2}) \mathrm {d} x\)....
Resolve \(\frac{3x - 1}{(x - 2)^{2}}, x \neq 2\) into partial fractions....
Solve: 8\(^{x - 2}\) = 4\(^{3x}\)...
Consider the following statement: x: All wrestlers are strong y: Some wresters are not weightl...
Given that \(y = x(x + 1)^{2}\), calculate the maximum value of y....