Processing math: 17%

WAEC Further Mathematics Past Questions & Answers - Page 96

476.

Given that 6,32,36,92,... are the first four terms of an exponential sequence (G.P), find in its simplest form the 8th term. 

A.

272

B.

276

C.

812

D.

816

Correct answer is C

Tn=arn1 (Geometric progression)

a=6,r=T2T1=326

r=186=3

= (\sqrt{6})(27\sqrt{3}) = 27\sqrt{18} = 81\sqrt{2}

477.

Solve the inequality x^{2} - 2x \geq 3

A.

-1 \leq x \leq 3

B.

x \geq 3 and x \leq -1

C.

x \geq 3 or x < -1

D.

-1 \leq x < 3

Correct answer is B

x^{2} - 2x \geq 3 \implies x^{2} - 2x - 3 \geq 0

x^{2} + x - 3x - 3 = (x + 1)(x - 3) \geq 0 

x = -1 ; x = 3

Check: x = -1  : (-1)^{2} - 2(-1)  = 1 + 2 \geq 3  (satisfied)

-1 < x < 3 : 0^{2} - 2(0) = 0 \geq 3 (not satisfied)

x < -1 : (-2)^{2} - 2(-2) = 4 + 4 = 8 \geq 3 (satisfied)

x = 3 : 3^{2} - 2(3) = 9 - 6 = 3 \geq 3 (satisfied)

x > 3 : 4^{2} - 2(4) = 16 - 8 = 8 \geq 3 (satisfied)

\therefore x^{2} - 2x \geq \text{3 is satisfied in the region x} \leq \text{-1 and x} \geq 3 

478.

Simplify: \frac{\cos 2\theta - 1}{\sin 2\theta}

A.

-\tan \theta

B.

-\cos \theta

C.

\tan \theta

D.

\cos \theta

Correct answer is A

\frac{\cos 2\theta - 1}{\sin 2\theta}

\cos (x + y) = \cos x \cos y - \sin x \sin y \implies \cos 2\theta = \cos^{2} \theta - \sin^{2} \theta

\cos^{2} \theta = 1 - \sin^{2} \theta \implies \cos 2\theta = 1 - 2\sin^{2} \theta

\sin 2\theta = 2\sin \theta \cos \theta

\therefore \frac{\cos 2\theta - 1}{\sin 2\theta} = \frac{1 - 2\sin^{2}\theta - 1}{2\sin \theta \cos \theta}

= \frac{-2 \sin^{2} \theta}{2\sin \theta \cos \theta} = \frac{- \sin \theta}{\cos \theta}

= -\tan \theta

479.

Which of the following sets is equivalent to (P \cup Q) \cap (P \cup Q')?

A.

P

B.

P \cap Q

C.

P \cup Q

D.

\emptyset

Correct answer is A

No explanation has been provided for this answer.

480.

A body is kept at rest by three forces F_{1} = (10N, 030°), F_{2} = (10N, 150°) and F_{3}. Find F_{3}.

A.

(12N, 090°)

B.

(10N, 270°)

C.

(10N, 180°)

D.

(10N, 120°)

Correct answer is B

No explanation has been provided for this answer.