Given that \(\sin x = \frac{-\sqrt{3}}{2}\) and \(\cos x > 0\), find x
300°
240°
120°
60°
Correct answer is A
In order to do this, simply find the option in the range where only the cos is +ve. This occurs in the range \(270° \leq x \leq 360°\).
Check: \(\sin 300 = - \sin 60 = \frac{-\sqrt{3}}{2}\)
\(\cos 300 = \cos 60 = \frac{1}{2}\)
\(27\sqrt{2}\)
\(27\sqrt{6}\)
\(81\sqrt{2}\)
\(81\sqrt{6}\)
Correct answer is C
\(T_{n} = ar^{n - 1}\) (Geometric progression)
\(a = \sqrt{6}, r = \frac{T_{2}}{T_{1}} = \frac{3\sqrt{2}}{\sqrt{6}} \)
\(r = \frac{\sqrt{18}}{\sqrt{6}} = \sqrt{3}\)
\(\therefore T_{8} = (\sqrt{6})(\sqrt{3})^{8 - 1} \)
= \((\sqrt{6})(27\sqrt{3}) = 27\sqrt{18} = 81\sqrt{2}\)
Solve the inequality \(x^{2} - 2x \geq 3\)
\(-1 \leq x \leq 3\)
\(x \geq 3\) and \(x \leq -1\)
\(x \geq 3\) or \(x < -1\)
\(-1 \leq x < 3\)
Correct answer is B
\(x^{2} - 2x \geq 3 \implies x^{2} - 2x - 3 \geq 0\)
\(x^{2} + x - 3x - 3 = (x + 1)(x - 3) \geq 0\)
\(x = -1 ; x = 3\)
Check: \(x = -1 : (-1)^{2} - 2(-1) = 1 + 2 \geq 3\) (satisfied)
\(-1 < x < 3 : 0^{2} - 2(0) = 0 \geq 3\) (not satisfied)
\(x < -1 : (-2)^{2} - 2(-2) = 4 + 4 = 8 \geq 3\) (satisfied)
\(x = 3 : 3^{2} - 2(3) = 9 - 6 = 3 \geq 3\) (satisfied)
\(x > 3 : 4^{2} - 2(4) = 16 - 8 = 8 \geq 3\) (satisfied)
\(\therefore x^{2} - 2x \geq \text{3 is satisfied in the region x} \leq \text{-1 and x} \geq 3\)
Simplify: \(\frac{\cos 2\theta - 1}{\sin 2\theta}\)
\(-\tan \theta\)
\(-\cos \theta\)
\(\tan \theta\)
\(\cos \theta\)
Correct answer is A
\(\frac{\cos 2\theta - 1}{\sin 2\theta}\)
\(\cos (x + y) = \cos x \cos y - \sin x \sin y \implies \cos 2\theta = \cos^{2} \theta - \sin^{2} \theta\)
\(\cos^{2} \theta = 1 - \sin^{2} \theta \implies \cos 2\theta = 1 - 2\sin^{2} \theta\)
\(\sin 2\theta = 2\sin \theta \cos \theta\)
\(\therefore \frac{\cos 2\theta - 1}{\sin 2\theta} = \frac{1 - 2\sin^{2}\theta - 1}{2\sin \theta \cos \theta}\)
= \(\frac{-2 \sin^{2} \theta}{2\sin \theta \cos \theta} = \frac{- \sin \theta}{\cos \theta}\)
= \(-\tan \theta\)
Which of the following sets is equivalent to \((P \cup Q) \cap (P \cup Q')\)?
P
\(P \cap Q\)
\(P \cup Q\)
\(\emptyset\)
Correct answer is A
No explanation has been provided for this answer.