F x varies inversely as y and y varies directly as Z, what is the relationship between x and z?
x \(\alpha\) z
x \(\alpha \frac{1}{z}\)
x \(\alpha z^2\)
x \(\alpha \frac{1}{z^2}\0
Correct answer is B
x \(\alpha \frac{1}{y}\)
y \(\alpha z\)
the relationship = x \(\alph \frac{1}{z}\)
Make u the subject of formula, E = \(\frac{m}{2g}\)(v2 - u2)
u = \(\sqrt{v^2 - \frac{2Eg}{m}}\)
u = \(\sqrt{\frac{v^2}{m} - \frac{2Eg}{4}}\)
u = \(\sqrt{v- \frac{2Eg}{m}}\)
u = \(\sqrt{\frac{2v^2Eg}{m}}\)
Correct answer is A
E = \(\frac{m}{2g}\)(v2 - u2)
multiply both sides by 2g
2Eg = 2g (\(\frac{M}{2g} (V^2 - U^2)\)
2Eg = m(V2 - U2)
2Eg - mV2 - mU2
mU2 = mV2 - 2Eg
divide both sides by m
\(\frac{mU^2}{m} = \frac{mV^2 - 2Eg}{m}\)
U2 = \(\frac{mV^2 - 2Eg}{m}\)
= \(\frac{mV^2}{m} - \frac{2Eg}{m}\)
U2 = V2 - \(\frac{2Eg}{m}\)
U = \(\sqrt{V^2 - \frac{2Eg}{m}}\)
10\(sqrt{2}\)
4\(sqrt{5}\)
5\(sqrt{2}\)
2\(sqrt{5}\)
Correct answer is D
p(4, 3) Q(2 - 1)
distance = \(\sqrt{(x_2 - x_1)^2 + (Y_2 - y_1)^2}\)
= \(\sqrt{(2 - 4)^2 + (-1 - 3)^2}\)
= \(\sqrt{(-2)^2 = (-4)^2}\)
= \(\sqrt{4 + 16}\)
= \(\sqrt{20}\)
= \(\sqrt{4 \times 5}\)
= 2\(\sqrt{5}\)
Find the truth set of the equation x2 = 3(2x + 9)
{x : x = 3, x = 9}
{x : x = -3, x = -9}
{x : x = 3, x = -9}
{x : x = -3, x = 9}
Correct answer is D
x2 = 3(2x + 9)
x2 = 6x + 27
x2 - 6x - 27 = 0
x2 - 9x + 3x - 27 = 0
x(x - 9) + 3(x - 9) = (x + 3)(x - 9) = 0
x + 3 = 0 or x - 9 = 0
x = -3 or x = 9
x = -3, x = 9
{0, 2, 6}
{1, 3}
{0, 6)
{9}
Correct answer is C
x = {0, 2, 4, 6}; y = {1, 2, 3, 4}; z = {1, 3}
u = {0, 1, 2, 3, 4, 5, 6}
y' = {0, 5, 6}
to find x \(\cap\) (Y' \(\cup\) Z)
first find y' \(\cup\) z = {0, 1, 3, 5, 6}
then x \(\cap\) (Y' \(\cup\) Z) = {0, 6}