Processing math: 37%

WAEC Further Mathematics Past Questions & Answers - Page 78

386.

Evaluate 214x3dx

A.

112

B.

1516

C.

1516

D.

112

Correct answer is D

4x3dx=4x3dx

4x3+12=2x2|21=2x2|21

= 222212=12+2=112

387.

Calculate, correct to one decimal place, the acute angle between the lines 3x - 4y + 5 = 0 and 2x + 3y - 1 = 0.

A.

70.6°

B.

50.2°

C.

39.8°

D.

19.4°

Correct answer is A

tanθ=m1m21m1m2

m1=slope of 1st line 4y=3x+5y=34x+54

m1=34

m2=slope of 2nd line3y=12xy=1323x

m2=23

tanθ=34(23)1((34)(23))=171212

tanθ=176

\theta \approxeq 70.6°

388.

If y = 2(2x + \sqrt{x})^{2}, find \frac{\mathrm d y}{\mathrm d x}.

A.

2\sqrt{x}(2x + \sqrt{2})

B.

4(2x + \sqrt{x})(2 + \frac{1}{2\sqrt{x}})

C.

4(2x + \sqrt{x})(2 + \sqrt{x})

D.

8(2x + \sqrt{x})(2 + \sqrt{x})

Correct answer is B

y = 2(2x + \sqrt{x})^{2}

Let u = 2x + \sqrt{x}

y = 2u^{2}

\frac{\mathrm d y}{\mathrm d u} = 4u

\frac{\mathrm d u}{\mathrm d x} = 2 + \frac{1}{2\sqrt{x}}

\therefore \frac{\mathrm d y}{\mathrm d x} = (\frac{\mathrm d y}{\mathrm d u})(\frac{\mathrm d u}{\mathrm d x})

= 4u(2 + \frac{1}{2\sqrt{x}})

= 4(2x + \sqrt{x})(2 + \frac{1}{2\sqrt{x}})

389.

Calculate, correct to one decimal place, the length of the line joining points X(3, 5) and Y(5, 1).

A.

4.0

B.

4.2

C.

4.5

D.

5.0

Correct answer is C

XY = \sqrt{(x_{1} - x_{2})^{2} + (y_{1} - y_{2})^{2}} is the distance between a point X(x_{1}, y_{1}) and Y(x_{2}, y_{2}).

XY = \sqrt{(3 - 5)^{2} + (5 - 1)^{2}} = \sqrt{20}

= 2\sqrt{5} = 4. 467 \approxeq 4.5

390.

For what values of x is \frac{x^{2} - 9x + 18}{x^{2} + 2x - 35} undefined?

A.

6 or 3

B.

-18 or -9

C.

-7 or 5

D.

-5 or 7

Correct answer is C

An fraction is undefined when the denominator has value = 0.

\frac{x^{2} - 9x + 18}{x^{2} + 2x - 35} is undefined when x^{2} + 2x - 35 = 0

x^2 + 7x - 5x - 35 = 0 \implies (x + 7)(x - 5) = 0

x = \text{-7 or 5}