The radius of a sphere is 3 cm. Find, in terms of π, its volume.
30πcm3
108πcm3
27πcm3
36πcm3
Correct answer is D
Given that radius = 3cm.
volume of sphere = 43×π×r3
= 43×π×33
= 43×π×27
= 4×π×9
= 36πcm3
1,106.29cm2
1,016.29cm2
1,106.89cm2
1,206.27cm2
Correct answer is A
radius = 8cm , height = 14cm and π=227
total surface area of a solid cylinder = 2πrh+2πr^2 = 2πr( h + r )
2 \times \frac{22}{7} \times 8( 8 + 14)
2 \times \frac{22}{7} \times 8 \times 22
\frac{7744}{7}
= 1,106.29cm^2
6.29m
7.67m
7.18m
6.65m
Correct answer is A
%error=5%, measured height = 5.98m
let the actual height = y
error=x - 5.98 (since 'y' is more than 5.98)
%error = \frac{error}{actual height}\times 100%
5% = \frac{y - 5.98}{y}\times 100%
\frac{5}{100} = \frac{y - 5.98}{y}
5y = 100(y - 5.98)
5y = 100y - 598
5y - 100y = - 598
-95y = - 598
y = \frac{-598}{-95}
y = 6.29m( to 2 d.p).
Find the roots of the equations: 3m^2 - 2m - 65 = 0
( -5, \frac{-13}{3})
( 5, \frac{-13}{3})
( 5, \frac{13}{3})
( -5, \frac{13}{3})
Correct answer is B
Find the roots of the equations: 3m^2 - 2m - 65 = 0
= m^2 - 15m + 13m - 65 = 0
= 3m(m - 5) + 13( m - 5) = 0
( m - 5)(3m + 13) = 0
m-5 = 0 or 3m + 13 = 0
therefore, m = 5 or \frac{-13}{3}
therefore the roots of the quadratic equation = ( 5, \frac{-13}{3})
If log_a 3 = m and log_a 5 = p, find log_a 75
m^2 + p
2m + p
m + 2p
m + p^2
Correct answer is C
Given: log_a 3 = m and log_a 5 = p
log_a 75 = log_a (3 × 25)
= log_a (3 × 5^2)
= log_a 3 + log_a 5^2
= log_a 3 + 2log_a 5
Since log_a 3 = m and log_a 5 = p
∴ log_a 75 = m + 2p