Processing math: 31%

WAEC Mathematics Past Questions & Answers - Page 7

31.

The radius of a sphere is 3 cm. Find, in terms of π, its volume.

A.

30πcm3

B.

108πcm3

C.

27πcm3

D.

36πcm3

Correct answer is D

Given that radius = 3cm.

volume of sphere = 43×π×r3

= 43×π×33

43×π×27

= 4×π×9

= 36πcm3

32.

The radius and height of a solid cylinder is 8 cm and 14 cm respectively. Find, correct to two d.p the total surface area.
(Take π=227)

A.

1,106.29cm2

B.

1,016.29cm2

C.

1,106.89cm2

D.

1,206.27cm2

Correct answer is A

radius = 8cm , height = 14cm  and π=227

total surface area of a solid cylinder = 2πrh+2πr^2 = 2πr( h + r )

  2 \times \frac{22}{7} \times 8( 8 + 14)

  2 \times \frac{22}{7} \times 8 \times 22

\frac{7744}{7}

= 1,106.29cm^2

33.

A student measured the height of a pole as 5.98 m which is less than the actual height. If the percentage error is 5%, find correct to two d.p the actual height of the pole.

A.

6.29m

B.

7.67m

C.

7.18m

D.

6.65m

Correct answer is A

%error=5%, measured height = 5.98m

let the actual height = y 

error=x - 5.98 (since 'y' is more than 5.98)

%error = \frac{error}{actual height}\times 100%

5% =  \frac{y - 5.98}{y}\times 100%

\frac{5}{100} = \frac{y - 5.98}{y}

5y = 100(y - 5.98)

5y = 100y - 598

5y - 100y = - 598

-95y = - 598

y = \frac{-598}{-95}

y = 6.29m( to 2 d.p).

34.

Find the roots of the equations: 3m^2 - 2m - 65 = 0

A.

( -5, \frac{-13}{3})

B.

( 5, \frac{-13}{3})

C.

( 5, \frac{13}{3})

D.

( -5, \frac{13}{3})

Correct answer is B

Find the roots of the equations: 3m^2 - 2m - 65 = 0

= m^2 - 15m + 13m - 65 = 0

= 3m(m - 5) + 13( m - 5) = 0

( m - 5)(3m + 13) = 0 

m-5 = 0 or 3m + 13 = 0

therefore, m = 5 or \frac{-13}{3}

therefore the roots of the quadratic equation = ( 5, \frac{-13}{3})

35.

If log_a 3 = m and log_a 5 = p, find log_a 75

A.

m^2 + p

B.

2m + p

C.

m + 2p

D.

m + p^2

Correct answer is C

Given: log_a 3 = m and log_a 5 = p
log_a 75 = log_a (3 × 25)
= log_a (3 × 5^2)
= log_a 3 + log_a 5^2
log_a 3 + 2log_a 5
Since log_a 3 = m and log_a 5 = p
log_a 75 = m + 2p