WAEC Mathematics Past Questions & Answers - Page 68

336.

Simplify \(\frac{(p - r)^2 - r^2}{2p^2 - 4pr}\)

A.

\(\frac{1}{2}\)

B.

p - 2r

C.

\(\frac{1}{p - 2r}\)

D.

\(\frac{2p}{p - 2r}\)

Correct answer is A

\(\frac{(p - r)^2 - r^2}{2p^2 - 4pr}\)

= \(\frac{(p - r)(p - r) - r^2}{2p^2 - 4pr}\)\

= \(\frac{p^2 - 2pr + r^2 - r^2}{2p(p - 2r}\)

= \(\frac{p^2 - 2pr}{2p(p - 2r)}\)

= \(\frac{p(p - 2r)}{2p(p - 2r)}\)

= \(\frac{1}{2}\)

337.

If 20(mod 9) is equivalent to y(mod 6), find y.

A.

1

B.

2

C.

3

D.

4

Correct answer is B

First, reduce 20(mod 9) to its simplest form in mod 9; 9 x 2 + 2 = 2(mod 9)

If 2(mod 9) y(mod 6), then y = 2 by comparism

338.

Examine M' \(\cap\) N from the venn diagram

A.

{f, g}

B.

{e}

C.

{e, f, g}

D.

{e, f, g}

Correct answer is A

From the venn diagram given,

M = (a, b, c), N = (c, f, g)

U = (a, b, c, d, e, f, g)

Thus M' \(\cap\) N = (e, f, g) \(\cap\) (c, f, g)

= (f, g)

339.

The perimeter of a sector of a circle of radius 21cm is 64cm. Find the angle of the sector [Take \(\pi = \frac{22}{7}\)]

A.

70o

B.

60o

C.

55o

D.

42o

Correct answer is B

Perimeter of a sector

= 2r + \(\frac{\theta}{360^o}\) x 2 x \(\frac{22}{7}\) x 21

64 = 2 x 21 + \(\frac{\theta}{360^o}\) x 2 x \(\frac{22}{7}\) x 21

64 = 42 + \(\frac{\theta}{360^o}\) x 44 x 3

64 - 42 = \(\frac{\theta}{360^o}\) x 11 x 3

22 = \(\frac{33\theta}{90}\)

\(\theta = \frac{22 \times 30}{11}\)

= 60o

340.

The diagram, MOPQ is a trapezium with QP||MO, MQ||NP, NQ||OP, |QP| = 9cm and the height of \(\Delta\) QNP = 6cm, calculate the area of the trapezium.

A.

96cm2

B.

90cm2

C.

81cm2

D.

27cm2

Correct answer is C

Area of \(\Delta\) QNP = \(\frac{1}{2} \times 9 \times 6 \) = 27cm2

Area of \(\Delta\) QMN = Area of \(\Delta\) QNP

= Area of \(\Delta\) PNO (triangles between the same parallels)

Hence, area of the trapezium

3 x area of \(\Delta\) QNP

= 3 x 27

= 81cm2