WAEC Further Mathematics Past Questions & Answers - Page 63

311.

What is the coordinate of the centre of the circle \(5x^{2} + 5y^{2} - 15x + 25y - 3 = 0\)?

A.

\((\frac{15}{2}, -\frac{25}{2})\)

B.

\((\frac{3}{2}, -\frac{5}{2})\)

C.

\((-\frac{3}{2}, \frac{5}{2})\)

D.

\((-\frac{15}{2}, \frac{25}{2})\)

Correct answer is B

Equation for a circle: \((x - a)^{2} + (y - b)^{2} = r^{2}\)

Expanding, we have:

\(x^{2} - 2ax + a^{2} + y^{2} - 2by + b^{2} = r^{2}\)

Given: \(5x^{2} + 5y^{2} - 15x + 25y - 3 = 0\)

Divide through by 5,

\(= x^{2} + y^{2} - 3x + 5y - \frac{3}{5} = 0\)

Comparing, we have

\(- 2a = -3; a = \frac{3}{2}\)

\(-2b = 5; b = -\frac{5}{2}\)

312.

Which of the following quadratic curves will not intersect with the x- axis?

A.

\(y = 2 - 4x - x^{2}\)

B.

\(y = x^{2} - 5x -1\)

C.

\(y = 2x^{2} - x - 1\)

D.

\(y = 3x^{2} - 2x + 4\)

Correct answer is D

The criterion for the quadratic curve to intersect the x- axis is \(b^{2} > 4ac\).

313.

If \(2\log_{4} 2 = x + 1\), find the value of x.

A.

-2

B.

-1

C.

0

D.

1

Correct answer is C

\(2\log_{4} 2 = x + 1\)

\(\log_{4} 2^{2} = \log_{4} 4 = 1\)

\(x + 1 = 1 \implies x = 0\)

314.

The polynomial \(2x^{3} + x^{2} - 3x + p\) has a remainder of 20 when divided by (x - 2). Find the value of constant p.

A.

8

B.

6

C.

-6

D.

-8

Correct answer is B

Remainder for f(2) = 20.

\(f(2) = 2(2^{3}) + 2^{2} - 3(2) + p = 20\)

\(16 + 4 - 6 + p = 20\)

\(14 + p = 20\)

\(p = 6\)

315.

If \(f(x) = 2x^{2} - 3x - 1\), find the value of x for which f(x) is minimum.

A.

\(\frac{3}{2}\)

B.

\(\frac{4}{3}\)

C.

\(\frac{3}{4}\)

D.

\(\frac{2}{3}\)

Correct answer is C

\(y = 2x^{2} - 3x - 1\)

\(\frac{\mathrm d y}{\mathrm d x} = 4x - 3 = 0\) (At turning point)

\(4x = 3 \implies x = \frac{3}{4}\)