The sum of the first n terms of a linear sequence is \(S_{n} = n^{2} + 2n\). Determine the general term of the sequence.

A.

n + 1

B.

2n + 1

C.

3n + 1

D.

4n + 1

Correct answer is B

\(S_{n} = \frac{n}{2}(2a + (n - 1) d = n^{2} + 2n\)

\(n(2a + (n - 1) d = 2n^{2} + 4n\)

\(2an + n^{2}d - nd = 2n^{2} + 4n\)

\(n^{2}d = 2n^{2}\)

\(d = 2\)

\((2a - d) n = 4n\)

\(2a - d = 4 \implies 2a = 4 + d = 4 + 2 = 6\)

\(a = 3\)

\(T_{n} = a + (n - 1)d\)

= \(3 + (n - 1)2 = 3 + 2n - 2 = 2n + 1\)