n + 1
2n + 1
3n + 1
4n + 1
Correct answer is B
\(S_{n} = \frac{n}{2}(2a + (n - 1) d = n^{2} + 2n\)
\(n(2a + (n - 1) d = 2n^{2} + 4n\)
\(2an + n^{2}d - nd = 2n^{2} + 4n\)
\(n^{2}d = 2n^{2}\)
\(d = 2\)
\((2a - d) n = 4n\)
\(2a - d = 4 \implies 2a = 4 + d = 4 + 2 = 6\)
\(a = 3\)
\(T_{n} = a + (n - 1)d\)
= \(3 + (n - 1)2 = 3 + 2n - 2 = 2n + 1\)
A function is defined by \(f(x) = \frac{3x + 1}{x^{2} - 1}, x \neq \pm 1\). Find f(-3)....
A polynomial is defined by \(f(x + 1) = x^{3} + px^{2} - 4x + 2\), find f(2)...
Which of these inequalities is represented by the shaded portion of the graph? ...
If \(y = \frac{1+x}{1-x}\), find \(\frac{dy}{dx}\)....
A car is moving at 120\(kmh^{-1}\). Find its speed in \(ms^{-1}\)....