\(q \vee \sim p\)
\(q \edge \sim p\)
\(\sim q \edge \sim p\)
\(\sim q \vee \sim p\)
Correct answer is B
No explanation has been provided for this answer.
\(\begin{pmatrix} 4 & 1 \\ -2 & 9 \end{pmatrix}\)
\(\begin{pmatrix} -4 & 1 \\ 2 & 9 \end{pmatrix}\)
\(\begin{pmatrix} -4 & 3 \\ -2 & 13 \end{pmatrix}\)
\(\begin{pmatrix} -4 & 3 \\ -2 & 9 \end{pmatrix}\)
Correct answer is D
\(\begin{pmatrix} 1 & -2 \\ 3 & 4 \end{pmatrix} \(\begin{pmatrix} -2 & 3 \\ 1 & 0 \end{pmatrix}\)
= \(\begin{pmatrix} (1 \times -2) + (-2 \times 1) & (1 \times 3) + (-2 \times 0) \\ (3 \times -2) + (4 \times 1) & (3 \times 3) + (4 \times 0) \end{pmatrix}\)
= \(\begin{pmatrix} -4 & 3 \\ -2 & 9 \end{pmatrix}\)
Express \(\frac{7\pi}{6}\) radians in degrees.
315°
210°
105°
75°
Correct answer is B
\(\pi = 180°\)
\(\frac{7\pi}{6} = \frac{7 \times 180}{6} \)
= \(210°\)
A rectangle has a perimeter of 24m. If its area is to be maximum, find its dimension.
12, 12
6, 6
4, 8
9, 3
Correct answer is B
\(Perimeter = 2(l + b) = 24\)
\(l + b = 12 \implies l = 12 - b\)
\(Area = (12 - b) \times b = 12b - b^{2}\)
\(\frac{\mathrm d A}{\mathrm d b} = 12 - 2b = 0\) (at maximum)
\(2b = 12 \implies b = 6\)
\(l = 12 - 6 = 6m\)
Evaluate \(\int_{1}^{2} (2 + 2x - 3x^{2}) \mathrm {d} x\).
-2
2
8
10
Correct answer is A
\(\int_{1}^{2} (2 + 2x - 3x^{2}) \mathrm {d} x\)
= \((2x + x^{2} - x^{3})|_{1}^{2}\)
= \((2(2) + 2^{2} - 2^{3}) - (2(1) + 1^{2} - 1^{3})\)
= \(0 - 2 = -2\)