WAEC Further Mathematics Past Questions & Answers - Page 58

286.

Find the value of the constant k for which \(a = 4 i - k j\) and \(b = 3 i + 8 j\) are perpendicular.

A.

\(\frac{2}{3}\)

B.

2

C.

3

D.

\(\frac{3}{2}\)

Correct answer is D

For perpendicular vectors, their dot product = 0.

\((4i - kj). (3i + 8j) = 12 - 8k = 0\)

\(8k = 12 \implies k = \frac{3}{2}\)

287.

If \(p = \begin{pmatrix} 2 \\ -2 \end{pmatrix} \) and \(q = \begin{pmatrix} 3 \\ 4 \end{pmatrix}\), find \(|q - \frac{1}{2}p|\).

A.

\(2\sqrt{2}\)

B.

\(\sqrt{13}\)

C.

\(5\)

D.

\(\sqrt{29}\)

Correct answer is D

\(p = \begin{pmatrix} 2 \\ -2 \end{pmatrix} , q = \begin{pmatrix} 3 \\ 4 \end{pmatrix}\)

\(\frac{1}{2}p = \begin{pmatrix} 1 \\ -1 \end{pmatrix}\)

\(q - \frac{1}{2}p = \begin{pmatrix} 3 \\ 4 \end{pmatrix} - \begin{pmatrix} 1 \\ -1 \end{pmatrix} = \begin{pmatrix} 2 \\ 5 \end{pmatrix}\)

\(|q - \frac{1}{2}p| = \sqrt{2^{2} + 5^{2}} = \sqrt{29}\)

288.

If n items are arranged two at a time, the number obtained is 20. Find the value of n.

A.

5

B.

10

C.

15

D.

40

Correct answer is A

\(^{n}P_{2} = \frac{n!}{(n - 2)!} = 20 \)

\(\frac{n(n - 1)(n - 2)!}{(n - 2)!} = 20\)

\(n(n - 1) = 20 \implies n^{2} - n - 20 = 0\)

\(n^{2} - 5n + 4n - 20 = 0\)

\(n(n - 5) + 4(n - 5) = 0\)

\(n = \text{5 or -4}\)

\(n = 5\)

289.

A body starts from rest and moves in a straight line with uniform acceleration of \(5 ms^{-2}\). How far, in metres, does it go in 10 seconds?

A.

50 m

B.

250 m

C.

350 m

D.

500 m

Correct answer is B

\(s = ut + \frac{1}{2} at^{2}\)

\(u = 0, t = 10 secs, a = 5 ms^{-2}\)

\(s = 0 + \frac{1}{2} 5 \times 10^{2}\)

\(s = 250 m\)

290.

A test consists of 12 questions out of which candidates are to answer 10. If the first 6 are compulsory, in how many ways can each candidate select her questions?

A.

40

B.

25

C.

15

D.

10

Correct answer is C

The first 6 questions can only be selected in 1 way. 

The remaining 4 questions can be selected in \(^{6}C_{4}\) ways.

= \(\frac{6!}{(6 - 4)! 4!} = 15\)