Processing math: 2%

WAEC Further Mathematics Past Questions & Answers - Page 57

281.

In the diagram above, forces P, Q and 50N are acting on a body at M. If the system is in equilibrium, calculate, in terms of θ, the magnitude of P.

A.

\frac{50 \cos \theta}{\sin (\theta + 45)°}

B.

\frac{50 \cos \theta}{\cos (\theta + 45)°}

C.

\frac{50 \sin \theta}{\cos (\theta + 45)°}

D.

\frac{50 \sin \theta}{\sin (\theta + 45)°}

Correct answer is D

No explanation has been provided for this answer.

282.

The distance between P(x, 7) and Q(6, 19) is 13 units. Find the values of x.

A.

1 or -7

B.

1 or 7

C.

1 or 11

D.

5 or -5

Correct answer is C

d = \sqrt{(x_{1} - x_{2})^{2} + (y_{1} - y_{2})^{2}}

13 = \sqrt{(x - 6)^{2} + (7 - 19)^{2}}

13^{2} = x^{2} - 12x + 36 + 144

169 = x^{2} - 12x + 180

x^{2} - 12x + 180 - 169 = 0 \implies x^{2} - 12x + 11 = 0

(x - 1)(x - 11) = 0 \implies x = \text{1 or 11}

283.

If y = x^{2} - 6x + 11 is written in the form y = a(x - h)^{2} + k, find the value of (a + h + k).

A.

-4

B.

-3

C.

0

D.

6

Correct answer is D

y = x^{2} - 6x + 11

y = a(x - h)^{2} + k

a(x - h)^{2} + k = a(x^{2} - 2hx + h^{2}) + k

ax^{2} - 2ahx + ah^{2} + k = x^{2} - 6x + 11

Comparing, we have

a = 1

2ah = 6 \implies 2h = 6; h = 3

ah^{2} + k = 11 \implies (1 \times 3^{2}) + k = 11

9 + k = 11 \implies k = 2

\therefore a + h + k = 1 + 3 + 2 = 6

284.

The initial and final velocities of an object of mass 5 kg are u = \begin{pmatrix} 1 \\ 3 \end{pmatrix} and v = \begin{pmatrix} 4 \\ 7 \end{pmatrix} respectively. Find the magnitude of its change in momentum.

A.

25

B.

15

C.

3\sqrt{7}

D.

\sqrt{10}

Correct answer is A

Change in momentum = m (v - u)

= 5 \times (\begin{pmatrix} 4 \\ 7 \end{pmatrix} - \begin{pmatrix} 1 \\ 3 \end{pmatrix})

= 5 \times \begin{pmatrix} 3 \\ 4 \end{pmatrix}

= \begin{pmatrix} 15 \\ 20 \end{pmatrix}

|m(v - u)| = \sqrt{15^{2} + 20^{2}} = \sqrt{625} = 25

285.

Find the value of the constant k for which a = 4 i - k j and b = 3 i + 8 j are perpendicular.

A.

\frac{2}{3}

B.

2

C.

3

D.

\frac{3}{2}

Correct answer is D

For perpendicular vectors, their dot product = 0.

(4i - kj). (3i + 8j) = 12 - 8k = 0

8k = 12 \implies k = \frac{3}{2}