WAEC Further Mathematics Past Questions & Answers - Page 55

271.

The tangent to the curve \(y = 4x^{3} + kx^{2} - 6x + 4\) at the point P(1, m) is parallel to the x- axis, where k and m are constants. Find the value of k

A.

3

B.

2

C.

-3

D.

-2

Correct answer is C

\(y = 4x^{3} + kx^{2} - 6x + 4\)

\(\frac{\mathrm d y}{\mathrm d x} = 12x^{2} + 2kx - 6\)

At P(1, m)

\(\frac{\mathrm d y}{\mathrm d x} = 12 + 2k - 6 = 0\) (parallel to the x- axis)

\(6 + 2k = 0 \implies k = -3\)

272.

Find the fourth term of the binomial expansion of \((x - k)^{5}\) in descending powers of x.<

A.

\(10x^{3}k^{2}\)

B.

\(5x^{3}k^{2}\)

C.

\(-5x^{2}k^{3}\)

D.

\(-10x^{2}k^{3}\)

Correct answer is D

\((x - k)^{5} = ^{5}C_{0}x^{5}(-k)^{0} + ^{5}C_{1}x^{4}(-k)^{1} + ...\)

The fourth term in the expansion = \(^{5}C_{4 - 1}(x)^{5 - 3}(-k)^{3 = 10 \times x^{2} \times -k^{3}\)

= \(-10x^{2}k^{3}\)

273.

The binary operation * is defined on the set of R, of real numbers by \(x * y = 3x + 3y - xy, \forall x, y \in R\). Determine, in terms of x, the identity element of the operation.

A.

\(\frac{2x}{x - 3}, x \neq 3\)

B.

\(\frac{2x}{x + 3}, x \neq -3\)

C.

\(\frac{3x}{x - 3}, x \neq 3\)

D.

\(\frac{3x}{x + 3}, x \neq -3\)

Correct answer is A

From the rules of binary operation, \(x * e = x\)

\(\implies x * e = 3x + 3e - xe = x\)

\(3e - xe = x - 3x = -2x\)

\(e = \frac{2x}{x - 3}, x \neq 3\)

274.

Simplify \(\frac{\tan 80° - \tan 20°}{1 + \tan 80° \tan 20°}\)

A.

\(3\sqrt{2}\)

B.

\(2\sqrt{3}\)

C.

\(\sqrt{3}\)

D.

\(\sqrt{2}\)

Correct answer is C

\(\tan (x - y) = \frac{\tan x - \tan y}{1 + \tan x \tan y}\)

\(\implies \frac{\tan 80 - \tan 20}{1 + \tan 80 \tan 20} = \tan (80 - 20) = \tan 60°\)

\(\tan 60 = \frac{\sin 60}{\cos 60} = \frac{\sqrt{3}}{2} ÷ \frac{1}{2}\)

= \(\sqrt{3}\)

275.

Simplify \(\frac{\sqrt{3}}{\sqrt{3} - 1} + \frac{\sqrt{3}}{\sqrt{3} +1}\)

A.

\(\frac{1}{2}\)

B.

\(\frac{1}{2}\sqrt{3}\)

C.

\(3\)

D.

\(2\sqrt{3}\)

Correct answer is C

\(\frac{\sqrt{3}}{\sqrt{3} - 1} + \frac{\sqrt{3}}{\sqrt{3} + 1}\)

= \(\frac{\sqrt{3}(\sqrt{3} + 1) + \sqrt{3}(\sqrt{3} - 1)}{(\sqrt{3} - 1)(\sqrt{3} + 1)}\)

= \(\frac{6}{3 - 1} \)

= 3