Processing math: 36%

WAEC Further Mathematics Past Questions & Answers - Page 53

261.

A bag contains 2 red and 4 green sweets of the same size and shape. Two boys pick a sweet each from the box, one after the other, without replacement. What is the probability that at least a sweet with green wrapper is picked?

A.

15

B.

25

C.

815

D.

1415

Correct answer is D

P(at least one green wrapper) = 1 - P(no green wrapper)

= 1(26×15)

= 1115

= 1415

262.

If f(x)=mx26x3 and f(1)=12, find the value of the constant m.

A.

9

B.

3

C.

-3

D.

-4

Correct answer is A

f(x)=mx26x3

f(x)=dydx=2mx6

f(1)=2m6=12

2m=18m=9

263.

Evaluate lim

A.

4

B.

3

C.

2

D.

0

Correct answer is A

\lim \limits_{x \to 3} \frac{x^{2} - 2x - 3}{x - 3}

\frac{x^{2} - 2x - 3}{x - 3} = \frac{x^{2} - 3x + x - 3}{x - 3}

\frac{(x - 3)(x + 1)}{x - 3} = x + 1

\lim \limits_{x \to 3} \frac{x^{2} - 2x - 3}{x - 3} \equiv \lim \limits_{x \to 3} (x + 1) (L'Hopital rule)

\lim \limits_{x \to 3} (x + 1) = 3 + 1 = 4

264.

Calculate in surd form, the value of \tan 15°.

A.

2 + \sqrt{3}

B.

1 + \sqrt{3}

C.

\sqrt{3} - 1

D.

2 - \sqrt{3}

Correct answer is D

\tan 15 = \tan (60 - 45)

\tan (x - y) = \frac{\tan x - \tan y}{1 + \tan x \tan y}

\tan (60 - 45) = \frac{\tan 60 - \tan 45}{1 + \tan 60 \tan 45}

= \frac{\sqrt{3} - 1}{1 + (\sqrt{3} \times 1)}

= \frac{\sqrt{3} - 1}{1 + \sqrt{3}}

Rationalizing by multiplying denominator and numerator by 1 - \sqrt{3},

\tan 15 = 2 - \sqrt{3}

265.

Two bodies of masses 8 kg and 5 kg travelling in the same direction with speeds x m/s and 2 m/s respectively collide. If after collision, they move together with a speed of 3.85 m/s, find, correct to the nearest whole number, the value of x.

A.

2

B.

5

C.

8

D.

13

Correct answer is B

(m_{1} v_{1} + m_{2} v_{2}) = (m_{1} + m_{2})v (Inelastic momentum)

8x + (5 \times 2) = (8 + 5) \times 3.85

8x + 10 = 13 \times 3.85 = 50.05

8x = 50.05 - 10 = 40.05

x \approxeq 5 m/s