WAEC Further Mathematics Past Questions & Answers - Page 53

261.

A body is acted upon by two forces \(F_{1} = (5 N, 060°)\) and \(F_{2} = (10 N, 180°)\). Find the magnitude of the resultant force.

A.

18.75 N

B.

15.75 N

C.

9.50 N

D.

8.66 N

Correct answer is D

\(F_{1} = (5 N, 060°) = 5 \cos 60 i + 5 \sin 60 j = 2.5 i + \frac{5\sqrt{3}}{2}j\)

\(F_{2} = (10 N, 180°) = 10 \cos 180 i + 10 \sin 180 j = -10i\)

\(R = F_{1} + F_{2} = -7.5 i + \frac{5\sqrt{3}}{2}j\)

\(|R| = \sqrt{(-7.5)^{2} + (\frac{5\sqrt{3}}{2})^{2}}\)

= \(\sqrt{56.25 + 18.75} = \sqrt{75}\)

= 8.66 N

262.

A bag contains 2 red and 4 green sweets of the same size and shape. Two boys pick a sweet each from the box, one after the other, without replacement. What is the probability that at least a sweet with green wrapper is picked?

A.

\(\frac{1}{5}\)

B.

\(\frac{2}{5}\)

C.

\(\frac{8}{15}\)

D.

\(\frac{14}{15}\)

Correct answer is D

P(at least one green wrapper) = 1 - P(no green wrapper)

= \(1 - (\frac{2}{6} \times \frac{1}{5})\)

= \(1 - \frac{1}{15}\)

= \(\frac{14}{15}\)

263.

If \(f(x) = mx^{2} - 6x - 3\) and \(f'(1) = 12\), find the value of the constant m.

A.

9

B.

3

C.

-3

D.

-4

Correct answer is A

\(f(x) = mx^{2} - 6x - 3\)

\(f '(x) = \frac{\mathrm d y}{\mathrm d x} = 2mx - 6\)

\(f'(1) = 2m - 6 = 12\)

\(2m = 18 \implies m = 9\)

264.

Evaluate \(\lim \limits_{x \to 3} \frac{x^{2} - 2x - 3}{x - 3}\)

A.

4

B.

3

C.

2

D.

0

Correct answer is A

\(\lim \limits_{x \to 3} \frac{x^{2} - 2x - 3}{x - 3}\)

\(\frac{x^{2} - 2x - 3}{x - 3} = \frac{x^{2} - 3x + x - 3}{x - 3}\)

\(\frac{(x - 3)(x + 1)}{x - 3} = x + 1\)

\(\lim \limits_{x \to 3} \frac{x^{2} - 2x - 3}{x - 3} \equiv \lim \limits_{x \to 3} (x + 1)\) (L'Hopital rule)

\(\lim \limits_{x \to 3} (x + 1) = 3 + 1 = 4\)

265.

Calculate in surd form, the value of \(\tan 15°\).

A.

\(2 + \sqrt{3}\)

B.

\(1 + \sqrt{3}\)

C.

\(\sqrt{3} - 1\)

D.

\(2 - \sqrt{3}\)

Correct answer is D

\(\tan 15 = \tan (60 - 45)\)

\(\tan (x - y) = \frac{\tan x - \tan y}{1 + \tan x \tan y}\)

\(\tan (60 - 45) = \frac{\tan 60 - \tan 45}{1 + \tan 60 \tan 45}\)

= \(\frac{\sqrt{3} - 1}{1 + (\sqrt{3} \times 1)}\)

= \(\frac{\sqrt{3} - 1}{1 + \sqrt{3}}\)

Rationalizing by multiplying denominator and numerator by \(1 - \sqrt{3}\),

\(\tan 15 = 2 - \sqrt{3}\)