Make b the subject of the relation lb = \(\frac{1}{2}\) (a + b)h
\(\frac{ah}{2l - h}\)
\(\frac{2l - h}{al}\)
\(\frac{al}{2l - h}\)
\(\frac{al}{2 - h}\)
Correct answer is A
lb = \(\frac{1}{2} (a + b)h
2lb = ah + bh
2lb - bh = ah
\(\frac{b(2l - h)}{2l - h} = \frac{ah}{2l - h}\)
b = \(\frac{ah}{2l - h}\)
6.6 cm
8.8 cm
4.4 cm
2.2 cm
Correct answer is C
Length = \(\frac{\theta}{360}\) x 2\(\pi\)r
= \(\frac{72}{360} \times 2 \frac{22}{7} \times \frac{0.5}{3.5}\)
= 4.4
If log\(_x\) 2 = 0.3, evaluate log\(_x\) 8.
2.4
1.2
0.9
0.6
Correct answer is C
log\(_x\)2 = 0.3
log\(_x\)8 = log\(_x\)2\(^3\) = 3 log\(_x\)2
= 3 x 0.3
= 0.9
31 cm
25 cm
20 cm
13 cm
Correct answer is B
Tan 52\(^o\) = \(\frac{32}{\text{|XZ|}}\)
|XZ| = \(\frac{32}{Tan 52^o}\)
= 25cm
If 2\(^{a}\) = \(\sqrt{64}\) and \(\frac{b}{a}\) = 3, evaluate a\(^2 + b^{2}\)
250
160
90
48
Correct answer is C
2\(^a\) = \(\sqrt{64}\)
2\(^a\) = 8
2\(^a\) = 2\(^3\)
a = 3
b = 3\(^a\)
b = 3 x 3 = 9
a\(^2\) + b\(^2\) = 3\(^2\) + 9\(^2\)
= 9 + 81 = 90